Advertisement

Generating Semantic and Logic Meaning Representations When Analyzing the Arabic Natural Questions

  • Wided Bakari
  • Patrice Bellot
  • Mahmoud Neji
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 736)

Abstract

In this paper, we provide a performance analysis of the question and describe their different tasks in Arabic language. Regardless of the approaches being studied this language, the first step is to analyze the question for extracting all the information exploited by the processes of searching for documents and selecting relevant passages. Question analysis shows that there are few studies provide semantic and logic-inference based-approaches in the Arabic. After extracting the keywords, determining the declarative form, generating the focus and the expected answer type, we transform the questions into semantic representations via the conceptual graph formalism and into logic representations using a transformation algorithm. This analysis is classified into tree modules: The first one emphasizes a preprocessing of the question; the second one generates a question transformation; and the third one provides a linguistic analysis. The goal of the first module is to extract the main features from each question (list of keywords, focus and expected answer type). The focus and the keywords are identified to retrieve the short and relevant answers located in small passages containing the accurate answer. The second module allows transforming the question into a declarative form. The third module makes some linguistic analyses that are used in the graph construction and logic representation phases. Lastly, we assess the process of analysis with examples of 5 types of questions collected in our corpus.

Keywords

Arabic question-answering Question analysis Declarative from Conceptual graph Logic representation Focus Expected answer type Keywords 

References

  1. 1.
    Tellex, S.: Pauchok: a modular framework for question answering. Master thesis Submitted to the Department of Electrical Engineering and Computer Science, Maccachusetts Institute of Technology, June 2003Google Scholar
  2. 2.
    Lee, C.-W., Shih, C.-W., Day, M.-Y., Tsai, T.-H., Jiang, T.-J., Wu, C.-W., Sung, C.-L., Chen, Y.-R., Wu, S.-H., Hsu, W.-L.: Perspectives on Chinese question answering systems. In: Proceedings of the Workshop on the Sciences of the Artificial (WSA 2005), Hualien, Taiwan (2005)Google Scholar
  3. 3.
    Kolomiyets, O., Moens, M.F.: A survey on question answering technology from an information retrieval perspective. Inf. Sci. 181(24), 5412–5434 (2011)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Embarek, M.: Un système de question-réponse dans le domaine médical Le système Esculape. Ph.D. thesis, Université de Paris-Est, Juillet 2008Google Scholar
  5. 5.
    Rodrigo, Á., Perez-Iglesias, J., Peñas, A., Garrido, G., Araujo, L.: A question answering system based on information retrieval and validation. In: InCLEF (Notebook Papers/LABs/Workshops) (2010)Google Scholar
  6. 6.
    Bakari, W., Bellot, P., Trigui, O., Neji, M.: Towards logical inference for Arabic question-answering. Res. Comput. Sci. 90, 87–99 (2015). rec. 2015-01-31; acc. 2015-02-25Google Scholar
  7. 7.
    Zweigenbaum, P., Grau, B., Ligozat, A.L., Robba, I., Rosset, S., Tannier, X., Bellot, P.: Apports de la linguistique dans les systèmes de recherche d’informations précises (2008)Google Scholar
  8. 8.
    Mendes, S., Véronique, M.: L’analyse des questions: intérêt pour la génération des réponses. In: Workshop Question-Réponse (2004)Google Scholar
  9. 9.
    Brill, E., Dumais, S., Banko, M.: An analysis of the AskMSR question-answering system. In: Proceedings of the ACL 2002 Conference on Empirical Methods in Natural Language Processing, vol. 10, pp. 257–264. Association for Computational Linguistics, July (2002)Google Scholar
  10. 10.
    Damljanovic, D., Agatonovic, M., Cunningham, H.: Identification of the question focus: combining syntactic analysis and ontology-based lookup through the user interaction. In: LREC, May 2010Google Scholar
  11. 11.
    Lally, A., Prager, J.M., McCord, M.C., Boguraev, B.K., Patwardhan, S., Fan, J., Chu-Carroll, J.: Question analysis: how Watson reads a clue. IBM J. Res. Dev. 56(34), 2:1 (2012)CrossRefGoogle Scholar
  12. 12.
    Zribi, I., Hammami, S.M., Belguith, L.H.: L’apport d’une approche hybride pour la reconnaissance des entités nommées en langue arabe. In: TALN 2010, Montréal, 19–23 juillet 2010, pp. 19–23 (2010)Google Scholar
  13. 13.
    Larkey, L., Connell, M.E.: Arabic information retrieval at UMass in TREC-10. In: Proceedings of TREC. NIST, Gaithersburg (2001). http://dx.doi.org/10.1.1.14.9079
  14. 14.
    Sowa, J.F.: Conceptual Structures: Information Processing in Mind and Machine. Addison-Wesley Company, Boston (1984)zbMATHGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Faculty of Economics and ManagementSfaxTunisia
  2. 2.Aix-Marseille University, University of Toulon, CNRS, ENSAMMarseilleFrance
  3. 3.MIR@CLSfaxTunisia
  4. 4.LSISMarseilleFrance

Personalised recommendations