Modeling of a System for fECG Extraction from abdECG

  • Rolant Gini John
  • Ponmozhy Deepan Chakravarthy
  • K. I. Ramachandran
  • Pooja Anand
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 736)


The objective of this paper is to move a step ahead in investigation and create a feasible, cost effective fetal ECG analysis tool for clinical practice which will be easy for usage by any non-skilled personal and provide actionable medical information such as the QRS complex of fetal ECG, fetal HR etc. In this method, a composite abdominal ECG is subjected to a pre-processing stage which involves filtering and normalization, then fed into the ‘thresholding and peak finding’ stage to detect the maternal ECG peaks. The next stage involves construction of the MLE of maternal ECG embedded in the abdominal ECG. After this, the constructed MLE which represent the maternal ECG is subtracted from the abdominal ECG to obtain fetal ECG along with a smidgen of noise. This noise which adulterates the fetal ECG is removed by filtering, done at the post processing stage. Thresholding and peak finding is done at the post processed signal to calculate the fetal HR. This paper puts forth a promising possibility of implementing the proposed algorithm in any suitable hardware model, since an average Accuracy of 76.8% and average Sensitivity of 90.7% is attained.


fetal ECG (fECG) maternal ECG (mECG) abdominal ECG (abdECG) fetal Heart Rate (fHR) Maximum Likelihood Estimation (MLE) 


Conflict of Interest

The authors disclose that there is no conflict of interest present.


  1. 1.
    Behar, J.: Extraction of clinical information from the non-invasive fetal electrocardiogram (2017). Accessed 21 Oct 2017
  2. 2.
    The Risks of Ultrasound Scans for the Mother and the Unborn Child - Ener-Chi Wellness Center. In: Ener-Chi Wellness Center. Accessed 21 Oct 2017
  3. 3.
    ScienceDaily: Fetal electrocardiogram helps in early detection of neonatal acidosis, Spanish researcher find. In: ScienceDaily. Accessed 21 Oct 2017
  4. 4.
    Singh, G., Archana, G.: Unraveling the mystery of vernix caseosa. Accessed 21 Oct 2017
  5. 5.
    Heart development. Accessed 21 Oct 2017
  6. 6.
    Zarzoso, V., Nandi, A.: Noninvasive fetal electrocardiogram extraction: blind separation versus adaptive noise cancellation. IEEE Trans. Biomed. Eng. 48, 12–18 (2001). CrossRefGoogle Scholar
  7. 7.
    Wu, S., Shen, Y., Zhou, Z., Lin, L., Zeng, Y., Gao, X.: Research of fetal ECG extraction using wavelet analysis and adaptive filtering. Comput. Biol. Med. 43, 1622–1627 (2013). CrossRefGoogle Scholar
  8. 8.
    Sameni, R., Jutten, C., Shamsollahi, M.: Multichannel electrocardiogram decomposition using periodic component analysis. IEEE Trans. Biomed. Eng. 55, 1935–1940 (2008). CrossRefGoogle Scholar
  9. 9.
    Yao, W., Zhao, J., Zheng, Z., Liu, T., Liu, H., Wang, J.: Fetal electrocardiogram extraction based on modified robust independent component analysis. Adv. Mater. Res. 749, 250–253 (2013). CrossRefGoogle Scholar
  10. 10.
    Martín-Clemente, R., Camargo-Olivares, J., Hornillo-Mellado, S., Elena, M., Román, I.: Fast technique for noninvasive fetal ECG extraction. IEEE Trans. Biomed. Eng. 58, 227–230 (2011). CrossRefGoogle Scholar
  11. 11.
    Luo, Z.: Fetal electrocardiogram extraction using blind source separation and empirical mode decomposition. J. Comput. Inf. Syst. 12(2012), 4825–4833 (2012). 8th edn
  12. 12.
    Monica Healthcare: Monica AN24 with IF24|Fetal Monitoring. In: Monica Healthcare. Accessed 21 Oct 2017
  13. 13.
    Mindchild: MERIDIAN MONITOR. Accessed 21 Oct 2017
  14. 14.
    Gini, J.R., Ramachandran, K.I., Nair, R.H., Anand, P.: Portable fetal ECG extractor from abdECG. In: International Conference on Communication and Signal processing, India (2016).
  15. 15.
    TMS320C5515 Datasheet (PDF) - Texas Instruments. Accessed 14 Nov 2017
  16. 16.
    MSC8144 Datasheet (PDF) - Freescale Semiconductor, Inc. Accessed 14 Nov 2017
  17. 17.
    daISy: The Datasets. Accessed 21 Oct 2017
  18. 18.
    Nair, R.H., Gini, J.R., Ramachandran, K.I.: A simplified approach to identify the fetal ECG from abdECG and to measure the fHR. In: Goh, J., Lim, C.T. (eds.) 7th WACBE world congress on bioengineering 2015. IP, vol. 52, pp. 23–26. Springer, Cham (2015). CrossRefGoogle Scholar
  19. 19.
    Myung, I.J.: Tutorial on maximum likelihood estimation. J. Math. Psychol. 47, 90–100 (2003). MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Rolant Gini John
    • 1
  • Ponmozhy Deepan Chakravarthy
    • 1
  • K. I. Ramachandran
    • 2
  • Pooja Anand
    • 1
  1. 1.Department of Electronics and Communication EngineeringAmrita UniversityCoimbatoreIndia
  2. 2.Center for Computational Engineering and NetworkingAmrita UniversityCoimbatoreIndia

Personalised recommendations