Classification of Dengue Gene Expression Using Entropy-Based Feature Selection and Pruning on Neural Network

  • Pandiselvam Pandiyarajan
  • Kathirvalavakumar Thangairulappan
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 736)

Abstract

Dengue virus is a growing problem in tropical countries. It serves diseases, especially in children. Different diagnosing methods like ELISA, Platelia, haemocytometer, RT-PCR, decision tree algorithms and Support Vector Machine algorithms are used to diagnose the dengue infection using the detection of antibodies IgG and IgM but the recognition of IgM is not possible between thirty to ninety days of dengue virus infection. These methods could not find the correct result and needs a volume of the blood. It is not possible, especially in the children. To overcome these problems, this paper proposes classification method of dengue infection based on informative and most significant genes in the gene expression of dengue patients. The proposed method needs only gene expression for a patient which is easily obtained from skin, hair and so on. The classification accuracy has been evaluated on various benchmark algorithms. It has been observed that the increase in classification accuracy for the proposed method is highly significant for dengue gene expression datasets when compared with benchmark algorithms and the standard results.

Keywords

Neural network Feature selection Pruning Dengue infection Dengue diagnosis Classification 

References

  1. 1.
    Tanner, L., Schreiber, M., Low, J.-G.H., Ong, A., Tolfvenstam, T., Lai, Y.L., Ng, L.C., Leo, Y.S., Puong, L.T., Vasudevan, S.G., Simmons, C.P., Hibberd, M.L., Eong, E.: Decision tree algorithms predict the diagnosis and outcome of dengue fever in the early phase of illness. PLoS Negl. Trop. Dis. 3, e196 (2008)Google Scholar
  2. 2.
    Singh, S., Singh, A., Singh, M.: Recommender system for detection of dengue using fuzzy logic. J. Comput. Eng. Technol. 7, 44–52 (2016)Google Scholar
  3. 3.
  4. 4.
    Bhatt, A., Joshi, M.: Analytical study of applied data mining in health care. Int. J. Emer. Technol. 8, 124–127 (2017)Google Scholar
  5. 5.
    Arunkumar, P.M., Chitradevi, B., Karthick, P., Ganesan, M., Madhan, A.S.: Dengue disease prediction using decision tree and support vector machine. SSRG Int. J. Comput. Sci. Eng. 1, 60–63 (2017)Google Scholar
  6. 6.
    Fathima, S.A., Manimegalai, D., Hundewale, N.: A review of data mining classification techniques applied for diagnosis and prognosis of the arbovirus – dengue. Int. J. Comput. Sci. 6, 322–328 (2011)Google Scholar
  7. 7.
    Saha, P., Mandal, R.: Detection of dengue disease using artificial neural networks. Int. J. Comput. Eng. 5, 65–68 (2017)Google Scholar
  8. 8.
    Fatima, M., Pasha, M.: Survey of machine learning algorithms for disease diagnostic. J. Intell. Learn. Syst. Appl. 9, 1–16 (2017)Google Scholar
  9. 9.
    Pabbi, V.: Fuzzy expert system for medical diagnosis. Int. J. Sci. Res. 5, 1–7 (2017)CrossRefGoogle Scholar
  10. 10.
    Roziqin, C.M., Basuki, A., Harsono, T.: Parameters data distribution analysis for dengue fever breaks in Jember using Monte Carlo. Int. J. Comput. Sci. Soft. Eng. 5, 45–48 (2016)Google Scholar
  11. 11.
    Mishra, S., Mohanty, P.S., Hota, R., Badajena, J.C.: Rough set approach for generation of classification rules for dengue. Int. J. Comput. Appl. 11, 31–35 (2015)Google Scholar
  12. 12.
    Shaukat, K., Masood, N., Shafaat, B.A., Jabbar, K., Shabbir, H., Shabbir, S.: Dengue fever in perspective of clustering algorithms. Data Min. Genomics Proteomics. 6, 1–5 (2015)Google Scholar
  13. 13.
    Subitha, N., Padmapriya, A.: Diagnosis for dengue fever using spatial data mining. Int. J. Comput. Trends Technol. 4, 2646–2651 (2013)Google Scholar
  14. 14.
    Tarle, B., Tajanpure, R., Jena, S.: Medical data classification using different optimization techniques: a survey. Int. J. Res. Eng. Technol. 5, 101–108 (2016)Google Scholar
  15. 15.
    Cetiner, G.B., Sari, M., Aburas, H.M.: Recognition of dengue disease pattern using artificial neural networks. Paper Presented at Fifth International Advanced Technologies Symposium (IAST 2009) (2009)Google Scholar
  16. 16.
    Ibrahim, F., Nasir Taib, M., Wan Abas, B.A.W., Chong Guan, C., Sulaiman, S.: A novel dengue fever (DF) and dengue Haemorrhagic fever (DHF) analysis using artificial neural network (ANN). Comput. Methods Programs Biomed. 79, 273–281 (2005)CrossRefGoogle Scholar
  17. 17.
    Reed, R.: Pruning algorithms – a survey. IEEE Trans. Neural Netw. 4(5), 740–747 (1993)CrossRefGoogle Scholar
  18. 18.
    Munasinghe, A., Premaratne, H.L., Fernando, M.G.N.A.S.: Towards an early warning system to combat dengue. Int. J. Comput. Sci. Electr. Eng. 1(2), 252–256 (2013)Google Scholar
  19. 19.
    Greer, K.: Tree pruning for new search techniques in computer games. Adv. Artif. Intell. (2013). http://dx.doi.org/10.1155/2013/357068
  20. 20.
    Lin, Z., Liu, R., Su, Z.: Linearized Alternating Direction Method with Adaptive Penalty for low-rank representation. In: Advances in Neural Information Processing Systems (2011)Google Scholar
  21. 21.
    Dreiseitl, S., Machado, O.L.: Logistic regression and artificial neural network classification models: a methodology review. J. Biomed. Inform. 35(5), 352–359 (2002)CrossRefGoogle Scholar
  22. 22.
    Zeng, X., Yeung, S.D.: Hidden neuron pruning of multilayer perceptron using a quantified sensitivity measure. Neuro Computing 69(7–9), 825–837 (2006)Google Scholar
  23. 23.
    Lima, J.-C.R., Rouquayrol, M.Z., Callado, M.R., Guede, M.-I.F., Pessoa, C.: Interpretation of the presence of IgM and IgG antibodies in a rapid test for dengue: analysis of dengue antibody prevalence in Fortaleza City in the 20th year of the epidemic. Rev. Soc. Bras. Med. Trop. 45(2), 163–167 (2012)CrossRefGoogle Scholar
  24. 24.
    Vaughn, W.D., Nisalak, A., Kalayanarooj, S., Solomon, T., Dung, N.M., Cuzzubbo, A., Devine, P.: Evaluation of a rapid immunochromatographic test for diagnosis of dengue virus infection. J. Clin. Microbiol. 35(1), 234–238 (1997)Google Scholar
  25. 25.
    Augasta, G.M., Kathirvalavakumar, T.: Pruning algorithms of neural networks – a comparative study. Cent. Eur. J. Comput. Sci. 3(3), 105–115 (2003)Google Scholar
  26. 26.

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Pandiselvam Pandiyarajan
    • 1
  • Kathirvalavakumar Thangairulappan
    • 2
  1. 1.Department of Computer ScienceAyya Nadar Janaki Ammal CollegeSivakasiIndia
  2. 2.Research Centre in Computer ScienceV.H.N.Senthikumara Nadar CollegeVirudhunagarIndia

Personalised recommendations