Automated Detection of Diabetic Retinopathy Using Weighted Support Vector Machines

  • Soumyadeep Bhattacharjee
  • Avik Banerjee
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 736)


Diabetic retinopathy is a complication of the eye caused by damage to the retinal cells due to prolonged suffering from diabetes mellitus and may lead to irreversible vision impairment in middle-age adults. The proposed algorithm detects the presence of Diabetic Retinopathy (DR) by segmentation of vital morphological features like Optic Disc, Fovea, blood vessels, and abnormalities like hemorrhages, exudates and neovascularization. The images are then classified using Support Vector Machines, based on data points in a multi-dimensional feature space. The proposed method is tested on 140 images from the Messidor database, from which 75 images are used to train an SVM model and the remaining 65 are used as inputs to the classifier.


Diabetic retinopathy SVM Neovascularization Optic disc Fovea Exudates 


  1. 1.
    Prevention of blindness from Diabetes Mellitus: Report of a WHO consultation in Geneva (2005)Google Scholar
  2. 2.
    Singalavanija, A., Supokavej, J., Bamroongsuk, P., Sinthanayothin, C., Phoojaruenchanachai, S., Kongbunkiat, V.: Feasibility study on computer-aided screening for diabetic retinopathy. Jpn. J. Ophthalmol. 50, 361–366 (2006)CrossRefGoogle Scholar
  3. 3.
    Abràmoff, M.D., Reinhardt, J.M., Russell, S.R., Folk, J.C., Mahajan, V.B., Niemeijer, M., Quellec, G.: Automated early detection of diabetic retinopathy. Ophthalmology 117(6), 1147–1154 (2010)CrossRefGoogle Scholar
  4. 4.
    Niemeijer, M., van Ginneken, B., Staal, J., Suttorp-Schulten, M.S.A., Abramoff, M.D.: Automatic detection of red lesions in digital color fundus photographs. IEEE Trans. Med. Imaging 24(5), 584–592 (2005)CrossRefGoogle Scholar
  5. 5.
    Fleming, A.D., Goatman, K.A., Philip, S., et al.: The role of hemorrhage and exudate detection in automated grading of diabetic retinopathy. Br. J. Ophthalmol. 94, 706–711 (2010)CrossRefGoogle Scholar
  6. 6.
    Gardner, G.G., Keating, D., Williamson, T.H., Elliott, A.T.: Automatic detection of diabetic retinopathy using an artificial neural network: a screening tool. Br. J. Ophthalmol. 80(11), 940–944 (1996)CrossRefGoogle Scholar
  7. 7.
    Tang, J., Kern, T.S.: Inflammation in diabetic retinopathy. Prog. Retinal Eye Res. 30(5), 343–358 (2011)CrossRefGoogle Scholar
  8. 8.
    Acharya, U.R., Chua, K.C., Ng, E.Y.K., Wei, W., Chee, C.: Application of higher order spectra for the identification of diabetes retinopathy stages. J. Med. Syst. 32(6), 481–488 (2008)CrossRefGoogle Scholar
  9. 9.
    Acharya, U.R., Lim, C.M., Ng, E.Y.K., Chee, C., Tamura, T.: Computer-based detection of diabetes retinopathy stages using digital fundus images. Part H J. Eng. Med. 223(5), 545–553. Proceedings of the Institution of Mechanical Engineers (2009)Google Scholar
  10. 10.
    Usman Akram, M., Khalid, S., Tariq, A., Khan, S.A., Azam, F.: Detection and classification of retinal lesions for grading of diabetic retinopathy. Comput. Biol. Med. 45, 161–171 (2014)CrossRefGoogle Scholar
  11. 11.
    Nayak, J., Bhat, P.S., Acharya, U.R., et al.: J. Med. Syst. 32, 107 (2008)CrossRefGoogle Scholar
  12. 12.
    Dupas, B., Walter, T., Erginay, A., Ordonez, R., Deb-Joardar, N., Gain, P., Klein, J.-C., Massin, P.: Evaluation of automated fundus photograph analysis algorithms for detecting microaneurysms, haemorrhages and exudates, and of a computer-assisted diagnostic system for grading diabetic retinopathy 1698(3), pp. 173–249 (2010)Google Scholar
  13. 13.
    Wong, L.Y., Acharya, U.R., Venkatesh, Y.V., Chee, C., Lim, C.M., Ng, E.Y.K.: Identification of different stages of diabetic retinopathy using retinal optical images. Inf. Sci. 178(1), 106–121 (2008)CrossRefGoogle Scholar
  14. 14.
    Roychowdhury, S., Koozekanani, D.D., Parhi, K.K.: DREAM: diabetic retinopathy analysis using machine learning. IEEE J. Biomed. Health Inform. 18(5), 1717–1728 (2014)CrossRefGoogle Scholar
  15. 15.
    Antal, B., Hajdu, A.: An ensemble-based system for microaneurysm detection and diabetic retinopathy grading. IEEE Trans. Biomed. Eng. 59(6), 1720–1726 (2012)CrossRefGoogle Scholar
  16. 16.
    Sinthanayothin, C., Boyce, J., Cook, H., Williamson, T.: Automated localisation of the optic disc, fovea, and retinal blood vessels from digital colour fundus images. Br. J. Ophthalmol. 83(8), 902–910 (1999)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.St. Thomas’ College of Engineering and TechnologyKolkataIndia

Personalised recommendations