A Mixed-Integer Linear Programming Model and a Simulated Annealing Algorithm for the Long-Term Preventive Maintenance Scheduling Problem

  • Roberto D. Aquino
  • Jonatas B. C. Chagas
  • Marcone J. F. Souza
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 736)

Abstract

This paper addresses a problem arising in the long-term maintenance programming of an iron ore processing plant of a company in Brazil. The problem is a complex maintenance programming where we have to assign the equipment preventive programming orders to the available work teams over a 52 week planning. We first developed a general mixed integer programming model which was not able for solving real instances using the CPLEX optimizer. Therefore, we also proposed a heuristic approach, based on the Simulated Annealing meta-heuristic, that was able to handle the instances.

Keywords

Long-term maintenance programming Scheduling Simulated Annealing Combinatorial optimization Heuristic 

Notes

Acknowledgements

The authors thank FAPEMIG, CNPq and UFOP for supporting this research.

References

  1. 1.
    Sharma, A., Yadava, G.S., Deshmukh, S.G.: A literature review and future perspectives on maintenance optimization. J. Qual. Maint. Eng. 17(1), 5–25 (2011)CrossRefGoogle Scholar
  2. 2.
    Simões, J.M., Gomes, C.F., Yasin, M.M.: A literature review of maintenance performance measurement: a conceptual framework and directions for future research. J. Qual. Maint. Eng. 17(2), 116–137 (2011)CrossRefGoogle Scholar
  3. 3.
    Yamayee, Z., Sidenblad, K., Yoshimura, M.: A computationally efficient optimal maintenance scheduling method. IEEE Trans. Power Appar. Syst. 102(2), 330–338 (1983)CrossRefGoogle Scholar
  4. 4.
    Yao, X., Fernández-Gaucherand, E., Fu, M.C., Marcus, S.I.: Optimal preventive maintenance scheduling in semiconductor manufacturing. IEEE Trans. Semicond. Manuf. 17(3), 345–356 (2004)CrossRefGoogle Scholar
  5. 5.
    Saraiva, J.T., Pereira, M.L., Mendes, V.T., Sousa, J.C.: A simulated annealing based approach to solve the generator maintenance scheduling problem. Electr. Power Syst. Res. 81(7), 1283–1291 (2011)CrossRefGoogle Scholar
  6. 6.
    Kirkpatrick, S., Gelatt, C.D., Vecchi, M.P.: Optimization by simulated annealing. Science 220(4598), 671–680 (1983)MathSciNetCrossRefMATHGoogle Scholar
  7. 7.
    López-Ibáñez, M., Dubois-Lacoste, J., Cáceres, L.P., Birattari, M., Stützle, T.: The irace package: iterated racing for automatic algorithm configuration. Oper. Res. Perspect. 3, 43–58 (2016)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Roberto D. Aquino
    • 1
  • Jonatas B. C. Chagas
    • 1
  • Marcone J. F. Souza
    • 1
  1. 1.Departamento de ComputaçãoUniversidade Federal de Ouro PretoOuro PretoBrazil

Personalised recommendations