A Mixed-Integer Linear Programming Model and a Simulated Annealing Algorithm for the Long-Term Preventive Maintenance Scheduling Problem

  • Roberto D. Aquino
  • Jonatas B. C. Chagas
  • Marcone J. F. Souza
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 736)


This paper addresses a problem arising in the long-term maintenance programming of an iron ore processing plant of a company in Brazil. The problem is a complex maintenance programming where we have to assign the equipment preventive programming orders to the available work teams over a 52 week planning. We first developed a general mixed integer programming model which was not able for solving real instances using the CPLEX optimizer. Therefore, we also proposed a heuristic approach, based on the Simulated Annealing meta-heuristic, that was able to handle the instances.


Long-term maintenance programming Scheduling Simulated Annealing Combinatorial optimization Heuristic 



The authors thank FAPEMIG, CNPq and UFOP for supporting this research.


  1. 1.
    Sharma, A., Yadava, G.S., Deshmukh, S.G.: A literature review and future perspectives on maintenance optimization. J. Qual. Maint. Eng. 17(1), 5–25 (2011)CrossRefGoogle Scholar
  2. 2.
    Simões, J.M., Gomes, C.F., Yasin, M.M.: A literature review of maintenance performance measurement: a conceptual framework and directions for future research. J. Qual. Maint. Eng. 17(2), 116–137 (2011)CrossRefGoogle Scholar
  3. 3.
    Yamayee, Z., Sidenblad, K., Yoshimura, M.: A computationally efficient optimal maintenance scheduling method. IEEE Trans. Power Appar. Syst. 102(2), 330–338 (1983)CrossRefGoogle Scholar
  4. 4.
    Yao, X., Fernández-Gaucherand, E., Fu, M.C., Marcus, S.I.: Optimal preventive maintenance scheduling in semiconductor manufacturing. IEEE Trans. Semicond. Manuf. 17(3), 345–356 (2004)CrossRefGoogle Scholar
  5. 5.
    Saraiva, J.T., Pereira, M.L., Mendes, V.T., Sousa, J.C.: A simulated annealing based approach to solve the generator maintenance scheduling problem. Electr. Power Syst. Res. 81(7), 1283–1291 (2011)CrossRefGoogle Scholar
  6. 6.
    Kirkpatrick, S., Gelatt, C.D., Vecchi, M.P.: Optimization by simulated annealing. Science 220(4598), 671–680 (1983)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    López-Ibáñez, M., Dubois-Lacoste, J., Cáceres, L.P., Birattari, M., Stützle, T.: The irace package: iterated racing for automatic algorithm configuration. Oper. Res. Perspect. 3, 43–58 (2016)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Roberto D. Aquino
    • 1
  • Jonatas B. C. Chagas
    • 1
  • Marcone J. F. Souza
    • 1
  1. 1.Departamento de ComputaçãoUniversidade Federal de Ouro PretoOuro PretoBrazil

Personalised recommendations