Advertisement

Asymptotics of Linear Resampling Statistics

  • Thorsten Dickhaus
Chapter

Abstract

We introduce linear resampling statistics, which can formally be regarded as linear rank statistics with random scores. Asymptotic effectiveness of resulting (conditional) resampling tests is considered in a general manner by means of (conditional) central limit theorems. Several examples are discussed in detail, and concrete algorithms are developed for practical data analysis. The problem of non-exchangeability under the null in multi-sample problems can be addressed by appropriate Studentization techniques.

References

  1. Efron B (1977) Bootstrap methods: another look at the jackknife. Technical report 37, Department of Statistics, Stanford UniversityGoogle Scholar
  2. Efron B (1979) Bootstrap methods: another look at the jackknife. Ann Stat 7:1–26.  https://doi.org/10.1214/aos/1176344552
  3. Hall P (1988) Theoretical comparison of bootstrap confidence intervals. Ann Stat 16(3):927–953Google Scholar
  4. Hall P, Wilson SR (1991) Two guidelines for bootstrap hypothesis testing. Biometrics 47(2): 757–762Google Scholar
  5. Janssen A (1997) Studentized permutation tests for non-i.i.d. hypotheses and the generalized Behrens-Fisher problem. Stat Probab Lett 36(1):9–21. https://doi.org/10.1016/S0167-7152(97)00043-6
  6. Janssen A (1998) Zur Asymptotik nichtparametrischer Tests, Lecture notes. Skripten zur Stochastik Nr. 29. Gesellschaft zur Förderung der Mathematischen Statistik, MünsterGoogle Scholar
  7. Janssen A (2005) Resampling Student’s t-type statistics. Ann Inst Stat Math 57(3): 507–529. https://doi.org/10.1007/BF02509237
  8. Janssen A, Pauls T (2003) How do bootstrap and permutation tests work? Ann Stat 31(3):768–806.  https://doi.org/10.1214/aos/1056562462
  9. Pauls T (2003) Resampling-Verfahren und ihre Anwendungen in der nichtparametrischen Testtheorie. Books on Demand, NorderstedtGoogle Scholar
  10. Pauly M (2009) Eine Analyse bedingter Tests mit bedingten Zentralen Grenzwertsätzen für Resampling-Statistiken. PhD thesis, Heinrich Heine Universität DüsseldorfGoogle Scholar
  11. Pitman E (1937) Significance tests which may be applied to samples from any populations. J R Stat Soc 4(1):119–130Google Scholar
  12. Romano JP (1990) On the behavior of randomization tests without a group invariance assumption. J Am Stat Assoc 85(411):686–692. https://doi.org/10.2307/2290003
  13. Singh K (1981) On the asymptotic accuracy of Efron’s bootstrap. Ann. Stat. 9(6):1187–1195Google Scholar
  14. Witting H, Müller-Funk U (1995) Mathematische Statistik II. Asymptotische Statistik: Parametrische Modelle und nichtparametrische Funktionale. B. G. Teubner, StuttgartGoogle Scholar
  15. Witting H, Nölle G (1970) Angewandte Mathematische Statistik. Optimale finite und asymptotische Verfahren. Leitfäden der angewandten Mathematik und Mechanik. Bd. 14. B. G. Teubner, StuttgartGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Thorsten Dickhaus
    • 1
  1. 1.Institute for StatisticsUniversity of BremenBremenGermany

Personalised recommendations