Skip to main content

Structural and Dielectric Properties of Polycrystalline Calcium Copper Titanate (CCTO)

  • Conference paper
  • First Online:
Advanced Manufacturing and Materials Science

Abstract

Polycrystalline calcium copper titanate (CCTO) with chemical composition Ca1- xCexCu3Ti4-yNi yO12 (x = 0.0, 0.25, 0.45, 0.65 and y = 0.0, 0.3, 0.5, 0.7) was synthesized via sol-gel technique. The prepared samples were subjected to pre-sintering in a muffle furnace at 800 ℃ for 6 h and thereafter sintered at 900 ℃ for 6 h. XRD analysis confirmed the formation of calcium copper titanate with traces of CaTiO3 and CuO whose intensity increases with substation of Ce–Ni. HRSEM micrograph shows large, regular and polyhedral grains with size ranging from 902.4 nm to 1.562 μm. EDX spectra shows presence of elements in agreement with the stoichiometry of the prepared sample. High value of dielectric constant (16,000 at 100 Hz) was observed in the sample with x = 0.25 and y = 0.3 at low frequency. The sample with x = 0.65 and y = 0.7 exhibit the lowest dielectric tangent loss (0.189). Cole-Cole plot indicates that the dielectric properties of the prepared sample mostly result from grain boundary resistance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Barman N, Tripathi S, Ravishankar N, Varma KBR (2016) Centrosymmetric tetragonal tellurium doped calcium copper titanate and its dielectric tunability. Solid State Commun 241:7–13

    Article  CAS  Google Scholar 

  2. Khare A, Sundar S, Mandal KD, Mukhopadhyay NK (2016) Effect of sintering duration on the dielectric properties of 0.9BaTiO3—0.1CaCu3Ti4O12 nanocomposite synthesized by solid state route. Microelectron Eng 164:1–6

    Article  CAS  Google Scholar 

  3. Sharma S, Singh MM, Rai US, Mandal KD (2015) Materials science in semiconductor processing rationalization of dielectric properties of nano-sized iron doped yttrium copper titanate using impedance and modulus studies. Mater Sci Semicond Process 31:720–727

    Article  CAS  Google Scholar 

  4. Singh L, Sin BC, Kim IW, Mandal KD, Chung H, Lee Y (2016) A Novel one-step flame synthesis method for tungsten-doped CCTO. J Am Ceram Soc 99(1):27–34

    Article  CAS  Google Scholar 

  5. Chunhong MU, Huaiwu Z, Yingli LIU, Yuanqiang S, Peng LIU (2010) Rare earth doped CaCu3Ti4O12 electronic ceramics for high frequency applications. J Rare Earths 28(1):43–47

    Article  CAS  Google Scholar 

  6. Liang P, Yang Z, Chao X (2016) Enhanced intrinsic permittivity and bulk response in Y2/3 Cu3Ti4+xO12 ceramics. Ceram Int 12:1–6

    Google Scholar 

  7. Li W, Qiu S, Chen N, Du G (2010) Enhanced dielectric response in Mg-doped CaCu3Ti4O12 ceramics. J Mater Sci Technol 26(8):682–686

    Article  CAS  Google Scholar 

  8. Wang XW (2016) Calcining temperature dependence on structure and dielectric properties of CaCu3Ti4O12 ceramics. J Mater Sci: Mater Electron 27(11):12134–12140

    CAS  Google Scholar 

  9. Mandal KD, Rai AK, Kumar D, Parkash O (2009) Dielectric properties of the Ca1-xLaxCu3Ti4-xCoxO12 system (x = 0.10, 0.20 and 0.30) synthesized by semi-wet route. J. Alloys Compd. 478:771–776

    Article  CAS  Google Scholar 

  10. Kumar A, Mandal KD, Kumar D, Parkash O (2010) Characterization of nickel doped CCTO: CaCu2.9Ni0.1Ti4O12 and CaCu3Ti3.9Ni0.1O12 synthesized by semi-wet route. J Alloys Compd 491:507–512

    Article  CAS  Google Scholar 

  11. Dubey AK, Singh P, Singh S, Kumar D, Parkash O (2011) Charge compensation, electrical and dielectric behavior of lanthanum doped. J Alloys Compd 509(9):3899–3906

    Article  CAS  Google Scholar 

  12. Jesurani S, Kanagesan S, Hashim M, Ismail I (2013) Dielectric properties of Zr doped CaCu3Ti4O12 synthesized by sol—gel route. J Alloys Compd 551:456–462

    Article  CAS  Google Scholar 

  13. Adams BTB, Sinclair DC, West AR (2002) Giant barrier layer capacitance effects in CaCu3Ti4O12 ceramics. Ceramics Adv Mater 14:1321–1323

    Article  CAS  Google Scholar 

  14. Jesurani S, Kanagesan S, Hashim M, Ismail I, Ibrahim IR (2014) Microstructural and dielectric properties of Zr doped microwave sintered CaCu3Ti4O12 synthesized by sol-gel route. Adv Mater 2014:1–6

    Google Scholar 

  15. Liu L, Fan H, Fang P, Chen X (2008) Sol-gel derived CaCu3Ti4O12 ceramics: synthesis, characterization and electrical properties. Mater Res Bull 43:1800–1807

    Article  CAS  Google Scholar 

  16. Singh L, Kim IW, Sin BC, Woo SK, Hyun SH, Mandal KD, Lee Y (2015) Combustion synthesis of nano-crystalline Bi2/3Cu3Ti3.90Fe0.10O12 using inexpensive TiO2 raw material and its dielectric characterization. Powder Technol 280:256–265

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. K. Srivastava .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Mohammed, J. et al. (2018). Structural and Dielectric Properties of Polycrystalline Calcium Copper Titanate (CCTO). In: Antony, K., Davim, J. (eds) Advanced Manufacturing and Materials Science. Lecture Notes on Multidisciplinary Industrial Engineering. Springer, Cham. https://doi.org/10.1007/978-3-319-76276-0_37

Download citation

Publish with us

Policies and ethics