Skip to main content

Development of Super Hydrophobic Surfaces for Oil Spill Separation

  • Conference paper
  • First Online:
  • 1068 Accesses

Part of the book series: Lecture Notes on Multidisciplinary Industrial Engineering ((LNMUINEN))

Abstract

Super hydrophobic sponges have attracted great attention recently as potential sorbent materials for oil spill cleanup due to excellent sorption capacity and high selectivity. In this study demonstration of a facile cost effective and scalable method to fabricate super hydrophobic sponge is discussed. Solution immersion of commercially available melamine sponge results in silanization of the sponge. It is achieved through secondary amine groups on the surface of the sponge skeletons. By this surface is tuned itself from hydrophilic to super hydrophobic with water contact angle of 110°. These findings offer an effective approach for oil spill containment and environmental remediation.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Irons DB, Peterson CH, Rice SD, Short JW, Esler D, Bodkin JL, Ballachey BE (2003) Long-term ecosystem response to the Exxon Valdez. Oil Spill Sci 302:2082−2086

    Google Scholar 

  2. Phillips L, Schaum J, Cohen M, Perry S, Artz R, Draxler R, Frithsen JB, Heist D, Lorber M (2010) Screening level assessment of risks due to dioxin emissions from burning oil from the BP deepwater horizon gulf of mexico spill. Environ Sci Technol 44:9383−9389

    Google Scholar 

  3. Mohajeri S, Zahed MA, Aziz HA, Isa MH, Mohajeri L (2010) Optimal conditions for bioremediation of oily seawater. Bioresour Technol 101(24)

    Google Scholar 

  4. Schinner F, Margesin R, (2001) Biodegradation and bioremediation of hydrocarbons in extreme environments. Appl Microbiol Biotechnol 56(5–6)

    Google Scholar 

  5. McDonagh M, Swannell RP, Lee K (1996) Field evaluations of marine oil spill bioremediation. Microbiol Rev 60(2):

    Google Scholar 

  6. Mullin JH, Buist I, Potter S, Nedwed T (2011) Surfactants to contract and thicken oil spills in pack ice for in situ burning. Cold Reg Sci Technol 67(1–2):3–23

    Google Scholar 

  7. Redmond MC, Kujawinski EB, Kido Soule MC, Valentine DL, Boysen AK, Longnecker K (2011) Fate of dispersants associated with the deepwater horizon oil spill. Environ Sci Technol 45(4):1298–1306

    Google Scholar 

  8. Mercier L, Walcarius A (2010) Mesoporous organosilica adsorbents: nanoengineered materials for removal of organic and inorganic pollutants. J Mater Chem 20(22):4478–4511

    Google Scholar 

  9. Zhu X, Zhang Z, Ren G, Yang J, Wang K, Xu X et al (2012) A novel superhydrophobic bulk material. J Mater Chem 22(38):20146–20148

    Article  CAS  Google Scholar 

  10. El‐Saeed SM, Farag RK (2008) Synthesis and characterization of oil sorbers based on docosanyl acrylate and methacrylates copolymers. J Appl Polym Sci 109(6):3704–3713

    Google Scholar 

  11. Gao D, Cao L, Hu HH (2007) Design and fabrication of micro-textures for inducing a superhydrophobic behavior on hydrophilic materials. Langmuir 23(8):4310–4314

    Article  CAS  Google Scholar 

  12. Crego-Calama M, Li XM, Reinhoudt D (2007) What do we need for a superhydrophobic surface? A review on the recent progress in the preparation of superhydrophobic surfaces. Chem Soc Rev 36(8):1350–1368

    Google Scholar 

  13. Huang ZM, Shan GR, Xu PY, Weng ZX (2003) Oil-absorption function of physical crosslinking in the high-oil-absorption resins. J Appl Polym Sci 90(14):3945–3950

    Google Scholar 

  14. Zhou XM, Cheng CZ (2010) Synthesis and characterization of a novel high-oilabsorbing resin. J Appl Polym Sci 115(6):3321–3325

    Article  CAS  Google Scholar 

  15. Inagaki M, Kawahara A, Konno H (2002) Sorption and recovery of heavy oils using carbonized fir fibers and recycling. Carbon 40(1):105–111

    Article  CAS  Google Scholar 

  16. Ono T, Sugimoto T, Shinkai S, Sada K (2007) Lipophilic polyelectrolyte gels as superabsorbent polymers for nonpolar organic solvents. Nat Mater 6(6):429–433

    Article  CAS  Google Scholar 

  17. Yuan J, Liu X, Akbulut O, Hu J, Suib SL, Kong J, Stellacci F (2008) Superwetting nanowire membranes for selective absorption. Nat Nanotechnol 3(6):332–336

    Article  CAS  Google Scholar 

  18. Yang Y, Sayari A, Hamoudi S (2005) Applications of pore-expanded mesoporous silica. 1. Removal of heavy metal cations and organic pollutants from wastewater. Chem Mater 17(1):212

    Article  CAS  Google Scholar 

  19. An Y, Tao S, Wang Y (2011) Superwetting monolithic SiO2 with hierarchical structure for oil removal. J Mater Chem 21(32):119

    Google Scholar 

  20. Tai NH, Gupta S, He WD (2016) A comparative study on superhydrophobic sponges and their application as fluid channel for continuous separation of oils and organic solvents from water. Compos Part B 101:99–106

    Article  CAS  Google Scholar 

  21. Gui X, Li H, Wang K, Wei J, Jia Y, Li Z, Fan L, Cao A, Zhu H, Wu D (2011) Recyclable carbon nanotube sponges for oil absorption. Acta Mater 59:4798–4804

    Article  CAS  Google Scholar 

  22. Zhao Y, Hu C, Hu Y, Cheng H, Shi G, Qu L (2012) A versatile, ultralight, nitrogen-doped graphene framework. Angew Chem Int Ed 51:11371–11375

    Article  CAS  Google Scholar 

  23. Sun H, Xu Z, Gao C (2013) Multifunctional, ultra-flyweight, synergistically assembled carbon aerogels. Adv Mater 25:2554–2560

    Article  CAS  Google Scholar 

  24. Nguyen DD, Tai NH, Lee SB, Kuo WS (2012) Superhydrophobic and superoleophilic properties of graphene-based sponges fabricated using a facile dip coating method. Environ Sci Technol 5:7908

    CAS  Google Scholar 

  25. Chen S et al (2013) Elastic carbon foam via direct carbonization of polymer foam for flexible electrodes and organic chemical absorption. Environ Sci Technol 6:2435

    CAS  Google Scholar 

  26. Gao X, Wang X, Ouyang X, Wen C (2016) Flexible superhydrophobic and superoleophilic MoS sponge for highly efficient oil-water separation. Scientific reports 1–8

    Google Scholar 

  27. Pham VH, Dickerson JH (2014) Superhydrophobic silanized melamine sponges as high efficiency oil absorbent materials. ACS Appl Mater Interfaces

    Article  CAS  Google Scholar 

  28. Liu T et al (2015) The preparation of superhydrophobic graphene/melamine composite sponge applied in treatment of oil pollution. J Porous Mater 22:1573–1581

    Article  CAS  Google Scholar 

  29. Arkles B (1977) Tailoring surfaces with silanes. Chemtech 7:766–778

    CAS  Google Scholar 

  30. Merline A, Vukusic DJ, Abdala S (2013) Melamine formaldehyde: curing studies and reaction mechanism. Polym J 45:413–441

    Article  CAS  Google Scholar 

  31. Liu K, Tian Y, Jiang L (2013) Bio-inspired superoleophobic and smart materials: design, fabrication, and application. Prog Mater Sci 58:503–556

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alex K. Babu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Babu, A.K. et al. (2018). Development of Super Hydrophobic Surfaces for Oil Spill Separation. In: Antony, K., Davim, J. (eds) Advanced Manufacturing and Materials Science. Lecture Notes on Multidisciplinary Industrial Engineering. Springer, Cham. https://doi.org/10.1007/978-3-319-76276-0_15

Download citation

Publish with us

Policies and ethics