Skip to main content

Particle Ensembles in Penning Traps

  • Chapter
  • First Online:
Particle Confinement in Penning Traps

Part of the book series: Springer Series on Atomic, Optical, and Plasma Physics ((SSAOPP,volume 100))

  • 1050 Accesses

Abstract

In contrast to the situation with a single particle in a trap, the presence of many charged particles gives rise to long-range particle-particle interactions, collective effects, and partial shielding of the trap potential that leads to shifts of the oscillation frequencies. Here, we briefly discuss the most important collective effects and review the treatment of ion ensembles as non-neutral plasmas that show phase transitions between phases including a crystal-like state.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. J.B. Jeffries, S.E. Barlow and G.H. Dunn, Theory of space charge shift of ion cyclotron resonances, Int. J. Mass Spectrom. Ion Process. 54, 169 (1983)

    Article  ADS  Google Scholar 

  2. J. Yu, M. Desaintfuscien and F. Plumelle, Ion density limitation in a Penning trap due to the combined effect of asymmetry and space charge, Appl. Phys. B 48, 51 (1989)

    Article  ADS  Google Scholar 

  3. D.F.A. Winters, M. Vogel, D.M. Segal, R.C. Thompson, Electronic detection of charged particle effects in a Penning trap, J. Phys. B 39, 3131 (2006)

    Article  ADS  Google Scholar 

  4. R.S. Van Dyck Jr., F.L. Moore, D.L. Farnham, P.B. Schwinberg, Number dependency in the compensated Penning trap, Phys. Rev. A 40, 6308 (1989)

    Google Scholar 

  5. T.J. Francl et al., Experimental determination of the effects of space charge on ion cyclotron resonance frequencies, Int. J. Mass Spectrom. Ion Proc. 54, 189 (1983)

    Article  ADS  Google Scholar 

  6. P. Ghosh, Ion Traps, Oxford University Press, Oxford (1995)

    Google Scholar 

  7. G. Werth, V.N. Gheorghe and F.G. Major, Charged Particle Traps, Springer, Heidelberg (2005)

    Google Scholar 

  8. G.-Z. Li, S. Guan and A.G. Marshall, Comparison of Equilibrium Ion Density Distribution and Trapping Force in Penning, Paul, and Combined Ion Traps, J. Am. Soc. Mass. Spectrom. 9, 473 (1998)

    Article  Google Scholar 

  9. K. Dholakia, G.Zs.K. Horvath, D. M. Segal, R. C. Thompson, D. M. Warrington, and D. C. Wilson, Photon-correlation detection of ion-oscillation frequencies in quadrupole ion traps, Phys. Rev. A 47, 441 (1993)

    Article  ADS  Google Scholar 

  10. M. Kretzschmar, Ideal Gas Approximation for an Ion Cloud in a Penning Trap, Z. Naturf. 45a, 965 (1990)

    Google Scholar 

  11. P. Paasche et al., Instabilities of an electron cloud in a Penning trap, Eur. Phys. J. D 22, 183 (2003)

    Article  ADS  Google Scholar 

  12. H. Hübner et al., Instabilities of ion confinement in a Penning trap, Europhys. Lett. 37, 459 (1997)

    Article  ADS  Google Scholar 

  13. G. Tommaseo, P. Paasche, C. Angelescu and G. Werth, Subharmonic excitation of the eigenmodes of charged particles in a Penning trap, Eur. Phys. J. D 28, 39 (2004)

    Article  ADS  Google Scholar 

  14. G. Werth, V.N. Gheorghe and F.G. Major, Charged Particle Traps II, Springer, Heidelberg (2009)

    Book  Google Scholar 

  15. L. Schweikhard, J. Ziegler, H. Bopp, and K. Lützenkirchen, The trapping condition and a new instability of the ion motion in the ion cyclotron resonance trap, Int. J. Mass Spectrom. Ion Proc. 141, 77 (1995)

    Article  ADS  Google Scholar 

  16. H.M. Holzscheiter, Ion confinement in a marginally stable Penning trap, Nucl. Inst. Meth. A 240, 457 (1985)

    Article  ADS  Google Scholar 

  17. T. Hasegawa, M.J. Jensen, and J.J. Bollinger, Stability of a Penning trap with a quadrupole rotating electric field, Phys. Rev. A 71, 023406 (2005)

    Article  ADS  Google Scholar 

  18. T.M. Squires, P. Yesley and G. Gabrielse, Stability of a Combined Penning-Ioffe Trap, Phys. Rev. Lett. 86, 5266 (2001)

    Article  ADS  Google Scholar 

  19. J.H. Malmberg and J.S. deGrassie, Properties of Nonneutral Plasma, Phys. Rev. Lett. 35, 577 (1975)

    Google Scholar 

  20. J.J. Bollinger et al., Electrostatic modes of ion-trap plasmas, Phys. Rev. A 48, 525 (1993)

    Article  ADS  Google Scholar 

  21. B.M. Jelenkovic et al., Sympathetically laser-cooled positrons, Nucl. Inst. Meth. B 192, 117127 (2002)

    Article  Google Scholar 

  22. G.B. Andresen et al., Centrifugal separation and equilibration dynamics in an electron-antiproton plasma, Phys. Rev. Lett. 106, 145001 (2011)

    Article  ADS  Google Scholar 

  23. D.H.E. Dubin, Plasmas in Penning traps, in: Trapped Charged Particles, M. Knoop, N. Madsen and R.C. Thompson, eds., World Scientific (2016)

    Google Scholar 

  24. A.W. Trivelpiece and R.W. Gould, Space Charge Waves in Cylindrical Plasma Columns, J. Appl. Phys. 30, 1784 (1959)

    Article  ADS  Google Scholar 

  25. D.H.E. Dubin, Theory of electrostatic fluid modes in a cold spheroidal non-neutral plasma, Phys. Rev. Lett. 66, 2076 (1991)

    Article  ADS  Google Scholar 

  26. D.H.E. Dubin, Plasmas Modes, in: Trapped Charged Particles, M. Knoop, N. Madsen and R.C. Thompson, eds., World Scientific (2016)

    Google Scholar 

  27. R.J. Hendricks, E.S. Phillips, D.M. Segal and R.C. Thompson, Laser cooling in the Penning trap: an analytical model for cooling rates in the presence of an axializing field, J. Phys. B 41, 035301 (2008)

    Article  ADS  Google Scholar 

  28. J.J. Bollinger et al., Nonneutral ion plasmas and crystals in Penning traps, Physica Scripta T59, 352 (1995)

    Article  ADS  Google Scholar 

  29. L. Gruber et al., Evidence for Highly Charged Ion Coulomb Crystallization in Multicomponent Strongly Coupled Plasmas, Phys. Rev. Lett. 86, 636 (2001)

    Article  ADS  Google Scholar 

  30. D.H.E. Dubin and T.M. O’Neil, Trapped nonneutral plasmas, liquids, and crystals (the thermal equilibrium states), Rev. Mod. Phys. 71, 87 (1999)

    Article  ADS  Google Scholar 

  31. T.M. O’Neil and D.H.E. Dubin, Thermal equilibria and thermodynamics of trapped plasmas with a single sign of charge, Phys. Plasmas 5, 2163 (1998)

    Article  ADS  Google Scholar 

  32. L.R. Brewer et al., Static properties of a non-neutral \(^9\)Be\(^+\) ion plasma, Phys. Rev. A 38, 859 (1988)

    Article  ADS  Google Scholar 

  33. X.P. Huang et al., Steady-State Confinement of Non-neutral Plasmas by Rotating Electric Fields, Phys. Rev. Lett. 78, 875 (1997)

    Article  ADS  Google Scholar 

  34. X.P. Huang, J. J. Bollinger, T.B. Mitchell and W.M. Itano, Phase-Locked Rotation of Crystallized Non-neutral Plasmas by Rotating Electric Fields, Phys. Rev. Lett. 80, 73 (1998)

    Article  ADS  Google Scholar 

  35. X.P. Huang et al., Precise control of the global rotation of strongly coupled ion plasmas in a Penning trap, Phys. Plasmas 5, 1656 (1998)

    Article  ADS  Google Scholar 

  36. F. Anderegg, E.M. Hollmann and C.F. Driscoll, Rotating Field Confinement of Pure Electron Plasmas Using Trivelpiece-Gould Modes, Phys. Rev. Lett. 81, 4875 (1998)

    Article  ADS  Google Scholar 

  37. E.M. Hollmann, F. Anderegg and C.F. Driscoll, Confinement and manipulation of non-neutral plasmas using rotating wall electric fields, Phys. Plasmas 7, 2776 (2000)

    Article  ADS  Google Scholar 

  38. D.J. Heinzen et al., Rotational equilibria and low-order modes of a non-neutral ion plasma, Phys. Rev. Lett. 66, 2080 (1991)

    Article  ADS  Google Scholar 

  39. M.D. Tinkle, R.G. Greaves and C.M. Surko, Modes of spheroidal ion plasmas at the Brillouin limit, Phys. Plasmas 3, 749 (1996)

    Article  ADS  Google Scholar 

  40. D.H.E. Dubin and J.P. Schiffer, Normal modes of cold confined one-component plasmas, Phys. Rev. E 53, 5249 (1996)

    Article  ADS  Google Scholar 

  41. P.M. Bellan, Fundamentals of Plasma Physics, Cambridge University Press, Cambridge (2006)

    Book  Google Scholar 

  42. J.H. Malmberg und T.M. O’Neil, Pure Electron Plasma, Liquid, and Crystal, Phys. Rev. Lett. 39, 1333 (1977)

    Google Scholar 

  43. C. Kittel, Introduction to solid state physics, 8th edition, John Wiley & Sons (2005)

    Google Scholar 

  44. S.L. Gilbert, J.J. Bollinger, and D.J. Wineland, Shell-Structure Phase of Magnetically Confined Strongly Coupled Plasmas, Phys. Rev. Lett. 60, 2022 (1988)

    Article  ADS  Google Scholar 

  45. M.J. Jensen, T. Hasegawa, J.J. Bollinger and D.H.E. Dubin, Rapid Heating of a Strongly Coupled Plasma near the Solid-Liquid Phase Transition, Phys. Rev. Lett. 94, 025001 (2005)

    Article  ADS  Google Scholar 

  46. P. Gaspard, Lyapunov exponent of ion motion in microplasmas, Phys. Rev. E 68, 056209 (2003)

    Article  ADS  Google Scholar 

  47. L. Tonks and I. Langmuir, Oscillations in ionized gases, Phys. Rev. 33, 195 (1929)

    Article  ADS  MATH  Google Scholar 

  48. S.G. Brush, H.L. Sahlin and E. Teller, Monte Carlo Study of a One-Component Plasma, J. Chem. Phys. 45, 2102 (1966)

    Article  ADS  Google Scholar 

  49. E.L. Pollock and J.P. Hansen, Statistical Mechanics of Dense Ionized Matter. II. Equilibrium Properties and Melting Transition of the Crystallized One-Component Plasma, Phys. Rev. A 8, 3110 (1973)

    Article  ADS  Google Scholar 

  50. W. L. Slattery, G. D. Doolen, and H. E. DeWitt, Improved equation of state for the classical one-component plasma, Phys. Rev. A 21, 2087 (1980)

    Article  ADS  Google Scholar 

  51. S. Ichimaru, (ed.) Strongly Coupled Plasma Physics, North-Holland Publ. Co., Amsterdam (1990)

    Google Scholar 

  52. F. Diedrich et al., Observation of a Phase Transition of Stored Laser-Cooled Ions, Phys. Rev. Lett. 59, 2931 (1987)

    Article  ADS  Google Scholar 

  53. G. Birkl, S. Kassner and H. Walther, Multiple-shell structures of laser-cooled \(^{24}\)Mg\(^+\) ions in a quadrupole storage ring, Nature 357, 310 (1992)

    Article  ADS  Google Scholar 

  54. D.H.E. Dubin, Effect of correlations on the thermal equilibrium and normal modes of a non-neutral plasma, Phys. Rev. E 53, 5268 (1996)

    Article  ADS  Google Scholar 

  55. D.H.E. Dubin, Correlation energies of simple bounded Coulomb lattices, Phys. Rev. A 40, 1140 (1989)

    Article  ADS  Google Scholar 

  56. T.B. Mitchell et al., Direct observations of structural phase transitions in planar crystallized ion plasmas, Science 282, 1290 (1998)

    Article  ADS  Google Scholar 

  57. S. Mavadia et al., Control of the conformations of ion Coulomb crystals in a Penning trap, Nat. Comm. 4, 2571 (2013)

    Article  Google Scholar 

  58. L. Hornekaer and M. Drewsen, Formation process of large ion Coulomb crystals in linear Paul traps, Phys. Rev. A 66, 013412 (2002)

    Article  ADS  Google Scholar 

  59. M. Drewsen, Ion Coulomb crystals, Physica B: Condensed Matter 460, 105 (2015)

    Article  ADS  Google Scholar 

  60. J.J. Bollinger et al., Crystalline order in laser-cooled, non-neutral ion plasmas, Phys. Plasmas 7, 7 (2000)

    Article  ADS  Google Scholar 

  61. R.C. Thompson, Ion Coulomb crystals, Contemporary Physics 56, 63 (2015)

    ADS  Google Scholar 

  62. T. Murböck et al., Rapid crystallization of externally produced ions in a Penning trap, Phys. Rev. A 94, 043410 (2016)

    Article  ADS  Google Scholar 

  63. J. Tan et al., Long-range order in laser-cooled, atomic-ion Wigner crystals observed by Bragg-scattering, Phys. Rev. Lett. 75, 4198 (1995)

    Article  ADS  Google Scholar 

  64. H. Totsuji, T. Kishimoto, C. Totsuji, and K. Tsuruta, Competition between Two Forms of Ordering in Finite Coulomb Clusters, Phys. Rev. Lett. 88, 125002 (2002)

    Article  ADS  Google Scholar 

  65. D.H.E. Dubin and T.M. ONeil, Computer simulation of ion clouds in a Penning trap, Phys. Rev. Lett. 60, 511 (1988)

    Google Scholar 

  66. R. W. Hasse and V.V. Avilov, Structure and Madelung energy of spherical Coulomb crystals, Phys. Rev. A 44, 4506 (1991)

    Article  ADS  Google Scholar 

  67. S. Schmidt et al., Sympathetic cooling in two-species ion crystals in a Penning trap, J. Mod. Opt., https://doi.org/10.1080/09500340.2017.1342877 (2017)

    Google Scholar 

  68. L. Schmöger et al., Coulomb crystallization of highly charged ions, Science 347, 1233 (2015)

    Article  ADS  Google Scholar 

  69. V.A. Alekseev, D.D. Krylova and V.S. Letokhov, Sympathetic cooling of two trapped ions, Physica Scripta 51, 368 (1995)

    Article  ADS  Google Scholar 

  70. J.B. Wübbena, S. Amairi, O. Mandel, and P.O. Schmidt, Sympathetic cooling of mixed-species two-ion crystals for precision spectroscopy, Phys. Rev. A 85, 043412 (2012)

    Article  ADS  Google Scholar 

  71. T.M. O’Neil, Centrifugal separation of a multispecies pure ion plasma, Phys. Fluids 24, 1447 (1981)

    Article  ADS  MATH  Google Scholar 

  72. D.J. Larson, J.C. Bergquist, J.J. Bollinger, W.M. Itano, and D.J. Wineland, Sympathetic cooling of trapped ions: A laser-cooled two-species nonneutral ion plasma, Phys. Rev. Lett. 57, 70 (1986)

    Article  ADS  Google Scholar 

  73. H. Imajo et al., Spatial separation of ion clouds between sympathetically laser-cooled Cd\(^+\)-ion isotopes in a Penning trap, Phys. Rev. A 55, 1276 (1997)

    Article  ADS  Google Scholar 

  74. M. Affolter, F. Anderegg, D.H.E. Dubin, and C.F. Driscoll, Cyclotron mode frequencies and resonant absorption in multi-species ion plasmas, Phys. Plasmas 22, 055701 (2015)

    Article  ADS  Google Scholar 

  75. B.M. Jelenkovic, A.S. Newbury, J.J. Bollinger, W.M. Itano, and T.B. Mitchell, Sympathetically cooled and compressed positron plasma, Phys. Rev. A 67, 063406 (2003)

    Article  ADS  Google Scholar 

  76. G. Gabrielse et al., Centrifugal separation of antiprotons and electrons, Phys. Rev. Lett. 105, 213002 (2010)

    Article  ADS  Google Scholar 

  77. F. Anderegg, Rotating Wall Technique and Centrifugal Separation, in: Trapped Charged Particles, M. Knoop, N. Madsen and R.C. Thompson, eds., World Scientific (2016)

    Google Scholar 

  78. M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions, Dover (1972)

    Google Scholar 

  79. L.R. Brewer et al., Static properties of a non-neutral \(^9\)Be\(^+\)-ion plasma, Phys. Rev. A 38, 859 (1988)

    Article  ADS  Google Scholar 

  80. S. Bharadia, M. Vogel, D.M. Segal and R.C. Thompson, Dynamics of laser-cooled Ca\(^+\) ions in a Penning trap with a rotating wall, Appl. Phys. B 107, 1105 (2012)

    Article  ADS  Google Scholar 

  81. D.H.E. Dubin and T.M. O’Neil, Trapped nonneutral plasmas, liquids, and crystals, Rev. Mod. Phys. 71, 87 (1999).

    Article  ADS  Google Scholar 

  82. G.L. Delzanno, G. Lapenta, and J.M. Finn, KANDINSKY: a PIC code for fluid simulations of Penning traps, IEEE Transactions on Plasma Science 30, 34 (2002)

    Article  ADS  Google Scholar 

  83. G. Lapenta, G.L. Delzanno, and J.M. Finn, Nonlinear PIC simulation in a Penning trap, AIP Conference Proceedings 606, 486 (2002)

    Article  ADS  Google Scholar 

  84. J. Steinmann, J. Groß, F. Herfurth and G. Zwicknagel, MD simulations of resistive cooling in HITRAP using GPUs, AIP Conf. Proc. 1521, 240 (2013)

    Article  ADS  Google Scholar 

  85. J. Steinmann, Modellierung und Simulation der Widerstandskuehlung von hochgeladenen Ionen, PhD thesis, University of Erlangen-Nürnberg (2015)

    Google Scholar 

  86. G. Maero et al., Numerical investigations on resistive cooling of trapped highly charged ions, Appl. Phys. B 107, 1087 (2012)

    Article  ADS  Google Scholar 

  87. G. Maero, Cooling of highly charged ions in a Penning trap for HITRAP, PhD thesis, University of Heidelberg (2008)

    Google Scholar 

  88. N. Sillitoe and L. Hilico, Numerical Simulations of Ion Cloud Dynamics, in: Trapped Charged Particles, M. Knoop, N. Madsen and R.C. Thompson, eds., World Scientific (2016)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manuel Vogel .

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Vogel, M. (2018). Particle Ensembles in Penning Traps. In: Particle Confinement in Penning Traps. Springer Series on Atomic, Optical, and Plasma Physics, vol 100. Springer, Cham. https://doi.org/10.1007/978-3-319-76264-7_8

Download citation

Publish with us

Policies and ethics