Advertisement

Inherent Effects of Single-Particle Confinement

  • Manuel Vogel
Chapter
Part of the Springer Series on Atomic, Optical, and Plasma Physics book series (SSAOPP, volume 100)

Abstract

In the previous chapter, we have discussed the effects of field imperfections on the motion of a single confined particle in a Penning trap. These effects can in principle be avoided, and can in reality be minimised by careful choice of parameters and of the trap manufacturing details. Here, we will discuss effects that are inherent to the confinement situation and can thus not be avoided even in principle.

References

  1. 1.
    E.M. Purcell, Spontaneous emission probabilities at radio frequencies. Phys. Rev. 69, 681 (1946)CrossRefGoogle Scholar
  2. 2.
    D.F.A. Winters, M. Vogel, D. Segal, R.C. Thompson, Electronic detection of charged particle effects in a Penning trap. J. Phys. B 39, 3131 (2006)ADSCrossRefGoogle Scholar
  3. 3.
    J.V. Porto, Series solution for the image charge fields in arbitrary cylindrically symmetric Penning traps. Phys. Rev. A 64, 023403 (2001)ADSCrossRefGoogle Scholar
  4. 4.
    E. Fischbach, N. Nakagawa, Apparatus-dependent contributions to g-2 and other phenomena. Phys. Rev. D 30, 2356 (1984)ADSCrossRefGoogle Scholar
  5. 5.
    D.G. Boulware, L.S. Brown, T. Lee, Apparatus-dependent contributions to \(g-2\)? Phys. Rev. D 32, 729 (1985)ADSCrossRefGoogle Scholar
  6. 6.
    R.S. Van Dyck Jr., F.L. Moore, D.L. Farnham, P.B. Schwinberg, Number dependency in the compensated Penning trap. Phys. Rev. A 40, 6308 (1989)ADSCrossRefGoogle Scholar
  7. 7.
    M. Vogel, W. Quint, Magnetic Moment of the bound electron, in: Fundamental Physics in Particle Traps, Springer Tracts in Modern Physics, vol. 256 (Springer, Heidelberg 2014)Google Scholar
  8. 8.
    R.S. Van Dyck Jr., S.L. Zafonte, S. Van Liew, D.B. Pinegar, P.B. Schwinberg, Ultraprecise atomic mass measurement of the \(\alpha \) particle and \(^4\)He. Phys. Rev. Lett. 92, 220802 (2004)Google Scholar
  9. 9.
    C. Roux et al., The trap design of PENTATRAP. Appl. Phys. B 107, 997 (2012)ADSCrossRefGoogle Scholar
  10. 10.
    D.G. Boulware, L.S. Brown, T. Lee, Apparatus-dependent contributions to \(g-2\)? Phys. Rev. D 32, 729 (1985)ADSCrossRefGoogle Scholar
  11. 11.
    M.D. Tinkle, S.E. Barlow, Image charge forces inside conducting boundaries. J. Appl. Phys. 90, 1612 (2001)ADSCrossRefGoogle Scholar
  12. 12.
    G.J. Ketter, Theoretical treatment of miscellaneous frequency-shifts in Penning traps with classical perturbation theory, Ph.D. thesis, University of Heidelberg, 2015Google Scholar
  13. 13.
    G. Werth, V.N. Gheorghe, F.G. Major, Charged Particle Traps II (Springer, Heidelberg, 2009)CrossRefGoogle Scholar
  14. 14.
    H. Häffner et al., Double Penning trap technique for precise \(g\) factor determinations in highly charged ions. Eur. Phys. J. D 22, 163 (2003)ADSCrossRefGoogle Scholar
  15. 15.
    F. Köhler et al., The electron mass from g-factor measurements on hydrogen-like carbon \(^{12}\)C\(^{5+}\), J. Phys. B: At. Mol. Opt. Phys. 48 (2015)Google Scholar
  16. 16.
    J.K. Thompson, S. Rainville, D.E. Pritchard, Cyclotron frequency shifts arising from polarization forces. Nature 430, 58 (2004)ADSCrossRefGoogle Scholar
  17. 17.
    M. Redshaw et al., Precision mass spectrometry and polarizability shifts with one and two ions in a Penning trap, in TCP 2006, ed. by J. Dilling, M. Comyn, J. Thompson, G. Gwinner (Springer, Berlin, Heidelberg, 2006)Google Scholar
  18. 18.
    L.S. Brown, G. Gabrielse, Geonium theory: physics of a single electron or ion in a Penning trap. Rev. Mod. Phys. 58, 233 (1986)ADSCrossRefGoogle Scholar
  19. 19.
    Z. Andelkovic et al., Status of deceleration and laser spectroscopy of highly charged ions at HITRAP. Hyp. Int. 235, 37 (2015)ADSCrossRefGoogle Scholar
  20. 20.
    D.A. Church, H.G. Dehmelt, Radiative cooling of an electrodynamically contained proton gas. J. Appl. Phys. 40, 3421 (1969)ADSCrossRefGoogle Scholar
  21. 21.
    G. Gabrielse et al., Precise Matter and Antimatter Tests of the Standard Model, in: Fundamental Physics in Particle Traps, Springer Tracts in Modern Physics, vol. 256 (Springer, Heidelberg 2014)Google Scholar
  22. 22.
    G. Gabrielse, H. Dehmelt, Observation of inhibited spontaneous emission. Phys. Rev. Lett. 55, 67 (1985)ADSCrossRefGoogle Scholar
  23. 23.
    J.D. Jackson, Classical Electrodynamics, 3rd edn. (Wiley, New York, 1998)zbMATHGoogle Scholar
  24. 24.
    L.S. Brown, K. Helmerson, J. Tan, Cyclotron motion in a spherical microwave cavity. Phys. Rev. A. 34, 2638 (1986)ADSCrossRefGoogle Scholar
  25. 25.
    L.S. Brown, G. Gabrielse, J.N. Tan, K.C.D. Chan, Cyclotron motion in a penning trap microwave cavity. Phys. Rev. A 37, 4163 (1988)ADSCrossRefGoogle Scholar
  26. 26.
    L.S. Brown, G. Gabrielse, K. Helmerson, J. Tan, Cyclotron motion in a microwave cavity: lifetime and frequency shifts. Phys. Rev. A 32, 3204 (1985)ADSCrossRefGoogle Scholar
  27. 27.
    G. Gabrielse, Relativistic mass increase at slow speeds. Am. J. Phys. 63, 568 (1995)ADSCrossRefGoogle Scholar
  28. 28.
    Y. Yaremko, Relativistic shifts of eigenfrequencies in an ideal Penning trap. Int. J. Mass Spectrom. 405, 64 (2016)CrossRefGoogle Scholar
  29. 29.
    Y. Yaremko, M. Przybylska, A.J. Maciejewski, Dynamics of a relativistic charge in the Penning trap. Chaos 25, 053102 (2015)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  30. 30.
    H. Mendlowitz, Double scattering of electrons with magnetic interaction. Phys. Rev. 97, 33 (1955)ADSCrossRefzbMATHGoogle Scholar
  31. 31.
    V. Bargmann, L. Michel, V.L. Telegdi, Precession of the polarization of particles moving in a homogeneous electromagnetic field. Phys. Rev. Lett. 2, 435 (1958)ADSCrossRefGoogle Scholar
  32. 32.
    F. Combley, F.J.M. Ferley, J.H. Field, E. Picasso, \(g-2\) Experiments as a test of special relativity. Phys. Rev. Lett. 42, 1383 (1979)ADSCrossRefGoogle Scholar
  33. 33.
    A.A. Sokolov, I.M. Ternov, Dokl. Akad. Nauk SSSR 153, 1052 (1963)Google Scholar
  34. 34.
    J. Schwinger, On gauge invariance and vacuum polarization. Phys. Rev. 82, 664 (1951)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  35. 35.
    E.T. Akhmedov, D. Singleton, On the relation between Unruh and Sokolov-Ternov effects. Int. J. Mod. Phy. A 22, 4797 (2007)ADSCrossRefzbMATHGoogle Scholar
  36. 36.
    H. Häffner et al., High-accuracy measurement of the magnetic moment anomaly of the electron bound in hydrogen-like carbon. Phys. Rev. Lett. 85, 5308 (2000)ADSCrossRefGoogle Scholar
  37. 37.
    J. Verdú et al., Electronic \(g\) factor of hydrogen-like oxygen \(^{16}\)O\(^{7+}\). Phys. Rev. Lett. 92, 093002 (2004)ADSCrossRefGoogle Scholar
  38. 38.
    S. Sturm et al., g factor of hydrogen-like \(^{28}\)Si\(^{13+}\). Phys. Rev. Lett. 107, 023002 (2011)ADSCrossRefGoogle Scholar
  39. 39.
    D. von Lindenfels et al., Experimental access to higher-order Zeeman effects by precision spectroscopy of highly charged ions in a Penning trap. Phys. Rev. A 87, 023412 (2013)ADSCrossRefGoogle Scholar
  40. 40.
    A. Herlert, L. Schweikhard, M. Vogel, Charge-changing reactions and their influence on the ion motion in a Penning trap. AIP Conference Proceedings 606, 652 (2002)ADSCrossRefGoogle Scholar
  41. 41.
    R.C. Thompson, D.C. Wilson, The motion of small numbers of ions in a Penning trap. Z. Phys. D 42, 271 (1997)ADSCrossRefGoogle Scholar
  42. 42.
    R.C. Thompson, Penning traps, in: Trapped Charged Particles, M. Knoop, N. Madsen, R.C. Thompson, eds., World Scientific (2016)Google Scholar
  43. 43.
    E.A. Cornell, K.R. Boyce, D.L.K. Fygenson, D.E. Pritchard, Two ions in a Penning trap: implications for precision mass spectroscopy. Phys. Rev. A 45, 3049 (1992)ADSCrossRefGoogle Scholar
  44. 44.
    M. Redshaw, J. McDaniel, W. Shi, E.G. Myers, Mass ratio of two ions in a Penning trap by alternating between the trap center and a large cyclotron orbit. Int. J. Mass Spectrom. 251, 125 (2006)CrossRefGoogle Scholar
  45. 45.
    M. Redshaw, J. McDaniel, E.G. Myers, Dipole moment of PH+ and the atomic masses of \(^{28}\)Si, \(^{31}\)P by comparing cyclotron frequencies of two ions simultaneously trapped in a Penning trap. Phys. Rev. Lett. 100, 093002 (2008)ADSCrossRefGoogle Scholar
  46. 46.
    M.J. Höcker, Precision Mass Measurements at THe-Trap and the FSU trap, Ph.D. thesis, University of Heidelberg, 2016Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.GSI Helmholtz Centre for Heavy Ion ResearchDarmstadtGermany

Personalised recommendations