Advertisement

Motion of a Single Particle in a Real Penning Trap

  • Manuel Vogel
Chapter
Part of the Springer Series on Atomic, Optical, and Plasma Physics book series (SSAOPP, volume 100)

Abstract

Deviations from the idealised situation described in Chap.  5 as they are present in real Penning traps give rise to a number of effects. Some of these can be minimized by efforts to approach the ideal situation as closely as possible. Others are inherent to the situation and cannot be avoided or circumvented, and we will discuss them in the next chapter. In particular in precision measurements, a number of imperfections may be of relevance. The most prominent imperfections in experimental setups are non-ideal electric and magnetic fields, misalignments of the trap axis with respect to the axis of the magnetic field and mechanical imperfections of trap electrodes. Such imperfections can in principle be avoided by appropriate choice of experimental parameters, in reality however, they are present and need to be taken into account in the analysis of the data. Let us have a look at the effects and their magnitudes.

References

  1. 1.
    L.S. Brown, G. Gabrielse, Geonium theory: physics of a single electron or ion in a Penning trap. Rev. Mod. Phys. 58, 233 (1986)ADSCrossRefGoogle Scholar
  2. 2.
    G. Gabrielse, L. Haarsma, S.L. Rolston, Open-endcap Penning traps for high precision experiments. Int. J. Mass Spectr. Ion Proc. 88, 319 (1989)ADSCrossRefGoogle Scholar
  3. 3.
    G. Gabrielse, F.C. Macintosh, Cylindrical Penning traps with orthogonalized anharmonicity compensation. Int. J. Mass. Spec. Ion Proc. 57, 1 (1984)ADSCrossRefGoogle Scholar
  4. 4.
    G. Gabrielse, Relaxation calculation of the electrostatic properties of compensated Penning traps with hyperbolic electrodes. Phys. Rev. A 27, 2277 (1983)ADSCrossRefGoogle Scholar
  5. 5.
    M. Abramowitz, I. A. Stegun, Handbook of Mathematical Functions, Dover (1972)Google Scholar
  6. 6.
    G.J. Ketter, Theoretical treatment of miscellaneous frequency-shifts in penning traps with classical perturbation theory, Ph.D. thesis, University of Heidelberg (2015)Google Scholar
  7. 7.
    J.D. Jackson, Classical Electrodynamics, 3rd edn. (Wiley, New York, 1998)zbMATHGoogle Scholar
  8. 8.
    J. Steinmann, Modellierung und Simulation der Widerstandskuehlung von hochgeladenen Ionen, Ph. D. thesis, University of Erlangen-Nürnberg, 2015Google Scholar
  9. 9.
    N.J.A. Sloane, ed., The On-Line Encyclopedia of Integer Sequences, published electronically at https://oeis.org (2017)
  10. 10.
    T. Murböck, Preparation and cooling of magnesium ion crystals for sympathetic cooling of highly charged ions in a Penning trap, Ph.D. thesis, TU Darmstadt (2017)Google Scholar
  11. 11.
    J. Steinmann, J. Groß, F. Herfurth, G. Zwicknagel, MD simulations of resistive cooling in HITRAP using GPUs. AIP Conf. Proc. 1521, 240 (2013)ADSCrossRefGoogle Scholar
  12. 12.
    J. Ketter et al., First order perturbative calculation of the frequency-shifts caused by static cylindrically symmetric electric and magnetic imperfections of a penning trap. Int. J. Mass. Spectrom. 358, 1 (2014)CrossRefGoogle Scholar
  13. 13.
    J. Verdu et al., Penning trap measurement of the magnetic moment of the antiproton. AIP Conference Proc. 796, 260 (2005)ADSCrossRefGoogle Scholar
  14. 14.
    M. Lara, J.P. Salas, Octupolar perturbation of a single ion in a Penning trap. Phys. Rev. E 67, 027401 (2003)ADSCrossRefGoogle Scholar
  15. 15.
    M. Lara, J.P. Salas, Octupolar perturbation of a single ion in a Penning trap, chaos: an interdisciplinary. J. Nonlinear Sci. 14, 763 (2004)Google Scholar
  16. 16.
    G. Werth, V.N. Gheorghe, F.G. Major, Charged Particle Traps II (Springer, Heidelberg, 2009)CrossRefGoogle Scholar
  17. 17.
    G. Werth, V.N. Gheorghe, F.G. Major, Charged Particle Traps (Springer, Heidelberg, 2005)Google Scholar
  18. 18.
    J. Verdu, Ultrapräzise Messung des elektronischen g-Faktors in wasserstoffähnlichem Sauerstoff, Ph.D. thesis, University of Mainz (2003)Google Scholar
  19. 19.
    Ch. Böhm et al., An ultra-stable voltage source for precision Penning-trap experiments. Nucl. Inst. Meth. A 828, 125 (2016)ADSCrossRefGoogle Scholar
  20. 20.
    D.B. Pinegar, K. Blaum, T.P. Biesiadzinski, S.L. Zafonte, R.S. Van Dyck Jr., Stable voltage source for Penning trap experiments. Rev. Sci. Inst. 80, 064701 (2009)ADSCrossRefGoogle Scholar
  21. 21.
    A. Wagner et al., A battery-based, low-noise voltage source. Rev. Sci. Inst. 81, 064706 (2010)ADSCrossRefGoogle Scholar
  22. 22.
    J. Labaziewicz et al., Temperature dependence of electric field noise above gold surfaces. Phys. Rev. Lett. 101, 180602 (2008)ADSCrossRefGoogle Scholar
  23. 23.
    M. Brownnutt, M. Kumph, P. Rabl, R. Blatt, Ion-trap measurements of electric-field noise near surfaces. Rev. Mod. Phys. 87, 1419 (2015)ADSCrossRefGoogle Scholar
  24. 24.
    A. Safavi-Naini, P. Rabl, P.F. Weck, H.R. Sadeghpour, Microscopic model of electric-field-noise heating in ion traps. Phys. Rev. A 84, 023412 (2011)ADSCrossRefGoogle Scholar
  25. 25.
    G. Gabrielse, J. Tan, Self-shielding superconducting solenoid systems. J. Appl. Phys. 63, 5143 (1988)ADSCrossRefGoogle Scholar
  26. 26.
    G. Gabrielse et al., A superconducting solenoid system which cancels fluctuations in the ambient magnetic field. J. Mag. Res. 91, 564 (1991)ADSGoogle Scholar
  27. 27.
    W. Jhe, D. Phillips, L. Haarsma, J. Tan, G. Gabrielse, Cylindrical penning traps and self-shielding superconductiong solenoids for high precision experiments. Phys. Scr. 46, 264 (1992)ADSCrossRefGoogle Scholar
  28. 28.
    G. Gabrielse, J.N. Tan, L.A. Orozco, S.L. Rolston, C.H. Tseng, R.L. Tjoelker, A superconducting solenoid system which cancels fluctuations in the ambient magnetic field. J. Mag. Res. 91, 564 (1991)ADSGoogle Scholar
  29. 29.
    S. Djekic, Implementation of new techniques for high precision g factor measurements, Ph.D. thesis, University of Mainz, 2004Google Scholar
  30. 30.
    K. Blaum et al., ISOLTRAP pins down masses of exotic nuclides. J. Phy. G: Nucl. Part. Phys. 31, 1775 (2005)CrossRefGoogle Scholar
  31. 31.
    R.S. Van Dyck Jr., D.L. Farnham, S.L. Zafonte, P.B. Schwinberg, Ultrastable superconducting magnet system for a Penning trap mass spectrometer. Rev. Sci. Instr. 70, 1665 (1999)ADSCrossRefGoogle Scholar
  32. 32.
    M. Marie-Jeanne et al., Magnetic field stabilization for high-accuracy mass measurements on exotic nuclides. Nucl. Instrum. Meth. A 587, 464 (2008)ADSCrossRefGoogle Scholar
  33. 33.
    Ch. Gerz, D. Wilsdorf, G. Werth, A high precision Penning trap mass spectrometer. Nucl. Inst. Meth. B 47, 453 (1990)ADSCrossRefGoogle Scholar
  34. 34.
    E.G. Myers, The most precise atomic mass measurements in Penning traps. Int. J. Mass Spectrom. 349–350, 107 (2013)CrossRefGoogle Scholar
  35. 35.
    R.S. Van Dyck Jr., S. Zafonte, S. Van Liew, D.B. Pinegar, P.B. Schwinberg, Ultraprecise atomic mass measurement of the \(\alpha \) particle and \(^4\)He. Phys. Rev. Lett. 92, 220802 (2004)ADSCrossRefGoogle Scholar
  36. 36.
    G.L. Salinger, J.C. Wheatley, Magnetic susceptibility of materials commonly used in the construction of cryogenic apparatus. Rev. Sci. Inst. 32, 872 (1961)ADSCrossRefGoogle Scholar
  37. 37.
    Z. Xia et al., Magnetization of materials used in cryostats. J. Low Temp. Phys. 126, 655 (2002)ADSCrossRefGoogle Scholar
  38. 38.
    D.M. Ginsberg, Magnetic susceptibilities of some materials which may be used in cryogenic apparatus. Rev. Sci. Inst. 41, 1661 (1970)ADSCrossRefGoogle Scholar
  39. 39.
    P.W. Anderson, Y.B. Kim, Hard superconductivity: theory of the motion of Abrikosov flux lines. Rev. Mod. Phys. 36, 39 (1964)ADSCrossRefGoogle Scholar
  40. 40.
    P.W. Anderson, Theory of flux creep in hard superconductors. Phys. Rev. Lett. 9, 309 (1962)ADSCrossRefGoogle Scholar
  41. 41.
    J.W. Britton et al., Vibration-induced field fluctuations in a superconducting magnet. Phys. Rev. A 93, 062511 (2016)ADSCrossRefGoogle Scholar
  42. 42.
    H.J. Schneider-Muntau, High-field NMR magnets. Solid State Nucl. Magn. Reson. 9, 61 (1997)CrossRefGoogle Scholar
  43. 43.
    T. Kiyoshi et al., HTS-NMR: present status and future plan. IEEE Trans. Appl. Supercond. 20, 714 (2010)ADSCrossRefGoogle Scholar
  44. 44.
    M. Kretzschmar, Theory of the elliptical Penning trap. Int. J. Mass Spectrom. 275, 21 (2008)CrossRefGoogle Scholar
  45. 45.
    M. Breitenfeldt et al., The elliptical Penning trap: experimental investigations and simulations. Int. J. Mass Spectrom. 275, 34 (2008)CrossRefGoogle Scholar
  46. 46.
    G.Zs.K. Horvath, J.-L. Hernandez-Pozos, K. Dholakia, J. Rink, D.M. Segal, R.C. Thompson, Ion dynamics in perturbed quadrupole ion traps, Phys. Rev. A 57, 1944 (1998)Google Scholar
  47. 47.
    G. Gabrielse, Why is sideband mass spectrometry possible with ions in a Penning trap? Phys. Rev. Lett. 102, 172501 (2009)ADSCrossRefGoogle Scholar
  48. 48.
    G. Gabrielse, The true cyclotron frequency for particles and ions in a Penning trap. Int. J. Mass Spectrom. 279, 107 (2009)CrossRefGoogle Scholar
  49. 49.
    P. Paasche et al., Individual and center-of-mass resonances in the motional spectrum of an electron cloud in a Penning trap. Eur. Phys. J. D 18, 295 (2002)ADSGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.GSI Helmholtz Centre for Heavy Ion ResearchDarmstadtGermany

Personalised recommendations