Advertisement

Variations on the Penning Trap Concept

  • Manuel Vogel
Chapter
Part of the Springer Series on Atomic, Optical, and Plasma Physics book series (SSAOPP, volume 100)

Abstract

In this chapter, we briefly have a look at a number of variations on the idea of a Penning trap, i.e. at specific deviations from the combination of a homogeneous magnetostatic field with an aligned quadrupolar electrostatic potential. We discuss only those designs that use magnetic and electric fields, i.e. we are not concerned with Paul traps, Kingdon traps and so forth, which are a huge topic on their own.

References

  1. 1.
    S. Stahl et al., A planar Penning trap. Eur. Phys. J. D 32, 139 (2005)ADSCrossRefGoogle Scholar
  2. 2.
    A.D. Poularikas, Transforms and Applications Handbook, 3rd edn. (CRC Press, Boca Raton, 2010). ISBN 9781420066524Google Scholar
  3. 3.
    F. Galve, G. Werth, Motional frequencies in a planar Penning trap. Hyp. Int. 174, 41 (2007)ADSCrossRefGoogle Scholar
  4. 4.
    J. Pinder, J. Verdu, A planar Penning trap with tunable dimensionality of the trapping potential. Int. J. Mass Spectrom. 356, 49 (2013)CrossRefGoogle Scholar
  5. 5.
    J.R. Castrejon-Pita, R.C. Thompson, Proposal for a planar Penning ion trap. Phys. Rev. A 72, 013405 (2005)ADSCrossRefGoogle Scholar
  6. 6.
    J.R. Castrejon-Pita, Design, Development and Operation of Novel Ion Trap Designs (VDM Publishing, Saarbrücken, 2009)Google Scholar
  7. 7.
    M. Hellwig, A. Bautista-Salvador, K. Singer, G. Werth, F. Schmidt-Kaler, Fabrication of a planar micro Penning trap and numerical investigations of versatile ion positioning protocols. New J. Phys. 12, 065019 (2010)ADSCrossRefGoogle Scholar
  8. 8.
    L. Jiang, W.B. Whitten, S. Pau, A planar ion trapping microdevice with integrated waveguides for optical detection. Opt. Express 19, 3037 (2011)ADSCrossRefGoogle Scholar
  9. 9.
    P. Bushev et al., Electrons in a cryogenic planar Penning trap and experimental challenges for quantum processing. Eur. Phys. J. D 50, 97 (2008)ADSCrossRefGoogle Scholar
  10. 10.
    F. Galve, P. Fernandez, G. Werth, Operation of a planar Penning trap. Eur. Phys. J. D 40, 201 (2006)ADSCrossRefGoogle Scholar
  11. 11.
    J. Goldman, G. Gabrielse, Optimized planar Penning traps for quantum-information studies. Phys. Rev. A 81, 052335 (2010)ADSCrossRefGoogle Scholar
  12. 12.
    J. Goldman, G. Gabrielse, Optimized planar Penning traps for quantum information studies. Hyp. Int. 199, 279 (2011)ADSCrossRefGoogle Scholar
  13. 13.
    J. Verdu, Theory of the coplanar-waveguide Penning trap. New J. Phys. 13, 113029 (2011)ADSCrossRefGoogle Scholar
  14. 14.
    E. Fischer, Three-dimensional stabilisation of charged particles in a quadrupole field. Z. Phys. 156, 1 (1959)ADSCrossRefGoogle Scholar
  15. 15.
    G.Z. Li, A quantum particle in a combined trap. Z. Phys. D 10, 451 (1988)CrossRefGoogle Scholar
  16. 16.
    W.M. Itano, Atomic ion frequency standards. Proc. IEEE 79, 936 (1991)ADSCrossRefGoogle Scholar
  17. 17.
    R. Blümel, Comment on ‘regular and chaotic motions in ion traps: a nonlinear analysis of trap equations’. Phys. Rev. A 48, 854 (1992)CrossRefGoogle Scholar
  18. 18.
    G.-Z. Li, G. Werth, The combined trap and some possible applications. Phys. Scr. 46, 587 (1992)ADSCrossRefGoogle Scholar
  19. 19.
    D.J. Bate, K. Dholakia, R.C. Thompson, D.C. Wilson, Ion oscillation frequencies in a combined trap. J. Mod. Opt. 39, 305 (1992)ADSCrossRefGoogle Scholar
  20. 20.
    K. Dholakia, G. Horvath, D.M. Segal, R.C. Thompson, Photon correlation measurement of ion oscillation frequencies in a combined trap. J. Mod. Opt. 39, 2179 (1992)ADSCrossRefGoogle Scholar
  21. 21.
    G.Z.K. Horvath, J.-L. Hernandez-Pozos, K. Dholakia, J. Rink, D.M. Segal, R.C. Thompson, Ion dynamics in perturbed quadrupole ion traps. Phys. Rev. A 57, 1944 (1998)ADSCrossRefGoogle Scholar
  22. 22.
    Y. Huang, G.-Z. Li, S. Guan, A.G. Marshall, A combined linear ion trap for mass spectrometry. J. Am. Soc. Mass Spectrom. 8, 962 (1997)CrossRefGoogle Scholar
  23. 23.
    M.A. van Eijkelenborg, M.E.M. Storkey, D.M. Segal, R.C. Thompson, Ion dynamics in a novel linear combined trap. Int. J. Mass Spectrom. 188, 155 (1999)CrossRefGoogle Scholar
  24. 24.
    M. Yan, X. Luo, X. Zhu, Potential usage of the magnetron-motion-free mode of one ion confined in a combined trap. Appl. Phys. 67, 235 (1998)CrossRefGoogle Scholar
  25. 25.
    G. Gabrielse, S.L. Rolston, L. Haarsma, W. Kells, Antihydrogen production using trapped plasmas. Phys. Lett. A 129, 38 (1988)ADSCrossRefGoogle Scholar
  26. 26.
    D.S. Hall, G. Gabrielse, Electron cooling of protons in a nested Penning trap. Phys. Rev. Lett. 77, 1962 (1996)ADSCrossRefGoogle Scholar
  27. 27.
    G. Gabrielse et al., Driven production of cold antihydrogen and the first measured distribution of antihydrogen states. Phys. Rev. Lett. 89, 233401 (2002)ADSCrossRefGoogle Scholar
  28. 28.
    M. Amoretti et al., Production and detection of cold antihydrogen atoms. Nature 419, 456 (2002)ADSCrossRefGoogle Scholar
  29. 29.
    M. Kretzschmar, Theory of the elliptical Penning trap. Int. J. Mass Spectrom. 275, 21 (2008)CrossRefGoogle Scholar
  30. 30.
    M. Breitenfeldt et al., The elliptical Penning trap: experimental investigations and simulations. Int. J. Mass Spectrom. 275, 34 (2008)CrossRefGoogle Scholar
  31. 31.
    L.S. Brown, G. Gabrielse, Precision spectroscopy of a charged particle in an imperfect Penning trap. Phys. Rev. A 25, 2423 (1982)ADSCrossRefGoogle Scholar
  32. 32.
    G. Gabrielse, Why is sideband mass spectrometry possible with ions in a Penning trap? Phys. Rev. Lett. 102, 172501 (2009)ADSCrossRefGoogle Scholar
  33. 33.
    G. Werth, V.N. Gheorghe, F.G. Major, Charged Particle Traps (Springer, Heidelberg, 2005)Google Scholar
  34. 34.
    L. Suess, C.D. Finch, R. Parthasarathy, S.B. Hill, F.B. Dunning, Permanent magnet Penning trap for heavy ion storage. Rev. Sci. Inst. 73, 2861 (2002)ADSCrossRefGoogle Scholar
  35. 35.
    S.F. Hoogerheide, Experiments with highly-ionized atoms in unitary Penning traps. Atoms 3, 367 (2015)ADSCrossRefGoogle Scholar
  36. 36.
    Y.V. Gott, M.S. Ioffe, V.G. Telkowskii, Some results on confinement in magnetic trapping, Nucl. Fusion, Suppl. 2, Pt. 3, 1045 (1962)Google Scholar
  37. 37.
    D.E. Pritchard, Cooling neutral atoms in a magnetic trap for precision spectroscopy. Phys. Rev. Lett. 51, 1336 (1983)ADSCrossRefGoogle Scholar
  38. 38.
    T.M. Squires, P. Yesley, G. Gabrielse, Stability of a combined Penning-Ioffe trap. Phys. Rev. Lett. 86, 5266 (2001)ADSCrossRefGoogle Scholar
  39. 39.
    G. Gabrielse et al., Antiproton confinement in a Penning-Ioffe trap for antihydrogen. Phys. Rev. Lett. 98, 113002 (2007)ADSCrossRefGoogle Scholar
  40. 40.
    G. Gabrielse et al., Antihydrogen production within a Penning-Ioffe trap. Phys. Rev. Lett. 100, 113001 (2008)ADSCrossRefGoogle Scholar
  41. 41.
    J.H. Malmberg, C.F. Driscoll, Long-time containment of a pure electron plasma. Phys. Rev. Lett. 44, 654 (1980)ADSCrossRefGoogle Scholar
  42. 42.
    D.H.E. Dubin, Plasmas in Penning traps, in Trapped Charged Particles, ed. by M. Knoop, N. Madsen, R.C. Thompson (World Scientific, 2016)Google Scholar
  43. 43.
    J. Fajans, A. Schmidt, Malmberg-Penning and Minimum-B trap compatibility: the advantages of higher-order multipole traps. Nucl. Inst. Meth. A 521, 318 (2004)ADSCrossRefGoogle Scholar
  44. 44.
    D.L. Eggleston, Confinement of test particles in a Malmberg-Penning trap with a biased axial wire. Phys. Plasmas 4, 1196 (1997)ADSCrossRefGoogle Scholar
  45. 45.
    S. Robertson, Annular Malmberg-Penning trap for studies of plasma confinement. Rev. Sci. Inst. 70, 2993 (1999)ADSCrossRefGoogle Scholar
  46. 46.
    S. Robertson, Electron confinement in an annular Penning trap. Phys. Plasmas 7, 2340 (2000)ADSCrossRefGoogle Scholar
  47. 47.
    J. Espejo, Q. Quraishi, S. Robertson, Experimental measurement of neoclassical mobility in an annular Malmberg-Penning trap. Phys. Rev. Lett. 84, 5520 (2000)ADSCrossRefGoogle Scholar
  48. 48.
    M. Vogel et al., A Penning trap for advanced studies with particles in extreme laser fields. Nucl. Inst. Meth. B 285, 65 (2012)ADSCrossRefGoogle Scholar
  49. 49.
    S. Kumar et al., Design of a mechanically compensated Penning trap for the study of ions in extreme laser field. J. Phys. Conf. Ser. 635, 092070 (2015)CrossRefGoogle Scholar
  50. 50.
    S. Ringleb et al., HILITE - ions in intense photon fields. J. Phys. Conf. Ser. 635, 092124 (2015)CrossRefGoogle Scholar
  51. 51.
    J.R. Castrejon-Pita et al., Novel designs for Penning Ion traps. J. Mod. Opt. 54, 1581 (2007)ADSCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.GSI Helmholtz Centre for Heavy Ion ResearchDarmstadtGermany

Personalised recommendations