Application of the Continuous Stern Gerlach Effect: Magnetic Moments

  • Manuel Vogel
Part of the Springer Series on Atomic, Optical, and Plasma Physics book series (SSAOPP, volume 100)


This chapter briefly reviews the measurements of magnetic moments that have been performed by application of the continuous Stern-Gerlach effect to a single particle confined in a Penning trap with a magnetic bottle.


  1. 1.
    R. Bluhm, V.A. Kostelecky, N. Russell, Testing CPT with anomalous magnetic moments. Phys. Rev. Lett. 79, 1432 (1997)ADSCrossRefGoogle Scholar
  2. 2.
    R. Bluhm, V.A. Kostelecky, N. Russell, CPT and Lorentz tests in Penning traps. Phys. Rev. D 57, 3922 (1998)ADSCrossRefGoogle Scholar
  3. 3.
    S. Sturm et al., Experiments for high-precision measurements of the bound electron’s magnetic moment. Atoms 5, 4 (2017)ADSCrossRefGoogle Scholar
  4. 4.
    M. Vogel, W. Quint (eds.) Fundamental Physics in Particle Traps, Springer Tracts in Modern Physics, vol. 256 (Springer, 2014)Google Scholar
  5. 5.
    A. Landé, Termstruktur und Zeemaneffekt der multipletts. Zeitschrift für Phys. 15, 189 (1923)ADSCrossRefGoogle Scholar
  6. 6.
    M. Vogel, The anomalous magnetic moment of the electron. Contemp. Phys. 50, 437 (2009)ADSCrossRefGoogle Scholar
  7. 7.
    P.A.M. Dirac, The quantum theory of the electron. Proc. R. Soc. A: Math. Phys. Eng. Sci. 117, 610 (1928)ADSCrossRefzbMATHGoogle Scholar
  8. 8.
    P. Kusch, H.M. Foley, Precision measurement of the ratio of the atomic g values in the \(^2P_{3/2}\) and \(^2P_{1/2}\) states of Gallium. Phys. Rev. 72, 1256 (1947)ADSCrossRefGoogle Scholar
  9. 9.
    P. Kusch, H.M. Foley, On the intrinsic moment of the electron. Phys. Rev. 74, 250 (1948)ADSCrossRefGoogle Scholar
  10. 10.
    J. Schwinger, On quantum-electrodynamics and the magnetic moment of the electron. Phys. Rev. 73, 416 (1948)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    H. Dehmelt, P. Ekstrom, Proposed \(g-2\) experiment on stored single electron or positron. Bull. Am. Phys. Soc. 18, 727 (1973)Google Scholar
  12. 12.
    H. Dehmelt, Continuous Stern Gerlach Effect: principle and idealized apparatus. Proc. Natl. Acad. Sci. USA 83, 2291 (1986) and 83, 3074 (1986)Google Scholar
  13. 13.
    R.S. van Dyck, P.B. Schwinberg, H.G. Dehmelt, New high-precision comparison of electron and positron g factors. Phys. Rev. Lett. 59, 26 (1987)ADSCrossRefGoogle Scholar
  14. 14.
    G. Gabrielse, D. Hanneke, T. Kinoshita, M. Nio, B. Odom, New determination of the fine structure constant from the electron g value and QED. Phys. Rev. Lett. 97, 030802 (2006); Erratum ibidem 99, 039902 (2007)Google Scholar
  15. 15.
    D. Hanneke, S. Fogwell, G. Gabrielse, New measurement of the electron magnetic moment and the fine structure constant. Phys. Rev. Lett. 100, 120801 (2008)ADSCrossRefGoogle Scholar
  16. 16.
    R. Bouchendira et al., New determination of the fine structure constant and test of the quantum electrodynamics. Phys. Rev. Lett. 106, 080801 (2011)ADSCrossRefGoogle Scholar
  17. 17.
    P.F. Winkler, D. Kleppner, T. Myint, F.G. Walther, Magnetic moment of the proton in Bohr magnetons. Phys. Rev. A 5, 83 (1972)ADSCrossRefGoogle Scholar
  18. 18.
    X. Kreissl et al., Remeasurement of the magnetic moment of the antiproton. Z. Phys. C 37, 557 (1988)ADSCrossRefGoogle Scholar
  19. 19.
    W. Quint, G. Gabrielse, The magnetic moment of the antiproton. Hyp. Int. 76, 379 (1993)ADSCrossRefGoogle Scholar
  20. 20.
    W. Quint et al., Continuous SternGerlach effect and the magnetic moment of the antiproton. Nucl. Inst. Meth. B 214, 207 (2004)ADSCrossRefGoogle Scholar
  21. 21.
    C.C. Rodegheri et al., An experiment for the direct determination of the g-factor of a single proton in a Penning trap. New J. Phys. 14, 063011 (2012)ADSCrossRefGoogle Scholar
  22. 22.
    N. Guise, J. DiSciacca, G. Gabrielse, Self-excitation and feedback cooling of an isolated proton. Phys. Rev. Lett. 104, 143001 (2010)ADSCrossRefGoogle Scholar
  23. 23.
    A. Mooser et al., Direct high-precision measurement of the magnetic moment of the proton. Nature 509, 596 (2014)ADSCrossRefGoogle Scholar
  24. 24.
    G. Schneider et al., Double-trap measurement of the proton magnetic moment at 0.3 parts per billion precision. Science 358, 1081 (2017)ADSCrossRefGoogle Scholar
  25. 25.
    J. DiSciacca, M. Marshall, K. Marable, G. Gabrielse, One-particle measurement of the antiproton magnetic moment. Phys. Rev. Lett. 110, 130801 (2013)ADSCrossRefGoogle Scholar
  26. 26.
    C. Smorra et al., A parts-per-billion measurement of the antiproton magnetic moment. Nature 550, 371 (2017)ADSCrossRefGoogle Scholar
  27. 27.
    O. Stern, W. Gerlach, Das magnetische Moment des Silberatoms (The magnetic moment of the silver atom). Z. Phys. 9, 349 (1922) and Z. Phys. 9, 353 (1922)Google Scholar
  28. 28.
    W. Gerlach, O. Stern, Über die Richtungsquantelung im magnetfeld. Ann. Phys. 379, 673 (1924)CrossRefGoogle Scholar
  29. 29.
    L. Brillouin, Is it possible to test by a direct experiment the hypothesis of the spinning electron? Proc. Natl. Acad. Sci. USA 14, 755 (1928)ADSCrossRefzbMATHGoogle Scholar
  30. 30.
    N. Bohr, in Collected Works of Niels Bohr, ed. by J. Kalckar, vol 6 (North-Holland, Amsterdam, 1996)Google Scholar
  31. 31.
    W. Pauli, in Handbuch der Physik, Band 5: Prinzipien der Quantentheorien, ed. by S. Flügge (Springer, Berlin, 1958), p. 167Google Scholar
  32. 32.
    F. Bloch, Experiments on the \(g\)-factor of the electron. Physica 19, 821 (1953)ADSCrossRefGoogle Scholar
  33. 33.
    H. Batelaan, T.J. Gay, J.J. Schwendiman, Stern-Gerlach Effect for electron beams. Phys. Rev. Lett. 79, 4517 (1997)ADSCrossRefGoogle Scholar
  34. 34.
    B.M. Garraway, S. Stenholm, Observing the spin of a free electron. Phys. Rev. A 60, 63 (1999)ADSCrossRefGoogle Scholar
  35. 35.
    G.A. Gallup, H. Batelaan, T.J. Gay, Quantum-mechanical analysis of a longitudinal Stern-Gerlach Effect. Phys. Rev. Lett. 86, 4508 (2001)ADSCrossRefGoogle Scholar
  36. 36.
    B.M. Garraway, S. Stenholm, Does a flying electron spin? Contemp. Phys. 43, 147 (2002)ADSCrossRefGoogle Scholar
  37. 37.
    J. Byrne, Study of a proposal for determining the \(g\)-factor anomaly for electrons by resonance excitation in a magnetic field. Can. J. Phys. 41, 1571 (1963)ADSCrossRefGoogle Scholar
  38. 38.
    H.G. Dehmelt, New continuous Stern-Gerlach effect and a hint of “the” elementary particle. Z. Phys. D 10, 127 (1988)ADSCrossRefGoogle Scholar
  39. 39.
    A. Mooser et al., Resolution of single spin flips of a single proton. Phys. Rev. Lett. 110, 140405 (2013)ADSCrossRefGoogle Scholar
  40. 40.
    N. Hermanspahn et al., Observation of the continuous Stern-Gerlach Effect on an electron bound in an atomic ion. Phys. Rev. Lett. 84, 427 (2000)ADSCrossRefGoogle Scholar
  41. 41.
    P.J. Mohr, D.B. Newell, B.N. Taylor, CODATA recommended values of the fundamental physical constants: 2014. Rev. Mod. Phys. 88, 035009 (2016)ADSCrossRefGoogle Scholar
  42. 42.
    T. Aoyama, M. Hayakawa, T. Kinoshita, M. Nio, Tenth-order electron anomalous magnetic moment: contribution of diagrams without closed lepton loops. Phys. Rev. D 91, 033006 (2015)ADSCrossRefGoogle Scholar
  43. 43.
    S. Laporta, High-precision calculation of the 4-loop contribution to the electron g-2 in QED. Phys. Lett. B 772, 232 (2017)ADSCrossRefGoogle Scholar
  44. 44.
    S. Volkov, New method of computing the contributions of graphs without lepton loops to the electron anomalous magnetic moment in QED. Phys. Rev. D 96, 096018 (2017)ADSCrossRefGoogle Scholar
  45. 45.
    T. Beier, The \(g_j\)-factor of a bound electron and the hyperfine structure splitting in hydrogenlike ions. Phys. Rep. 339, 79 (2000)ADSCrossRefGoogle Scholar
  46. 46.
    A.V. Volotka, D.A. Glazov, G. Plunien, V.M. Shabaev, Progress in quantum electrodynamics theory of highly charged ions. Ann. Phys. 525, 636 (2013)MathSciNetCrossRefGoogle Scholar
  47. 47.
    G. Breit, The magnetic moment of the electron. Nature 122, 649 (1928)ADSCrossRefGoogle Scholar
  48. 48.
    V.M. Shabaev, V.A. Yerokhin, Recoil correction to the bound-electron \(g\)-factor in H-like atoms to all orders in \(\alpha Z\). Phys. Rev. Lett. 88, 091801 (2002)ADSCrossRefGoogle Scholar
  49. 49.
    M. Vogel, W. Quint, Aspects of fundamental physics in precision spectroscopy of highly charged ions in Penning Traps. Ann. Phys. 525, 505 (2013)CrossRefGoogle Scholar
  50. 50.
    S. Sturm et al., g-factor measurement of hydrogen-like \(^{28}\)Si\(^{13+}\) as a challenge to QED calculations. Phys. Rev. A 87, 030501(R) (2013)ADSCrossRefGoogle Scholar
  51. 51.
    V.M. Shabaev, D.A. Glazov, N.S. Oreshkina, A.V. Volotka, G. Plunien, H.J. Kluge, W. Quint, \(g\)-factor of heavy ions: a new access to the fine structure constant. Phys. Rev. Lett. 96, 253002 (2006)ADSCrossRefGoogle Scholar
  52. 52.
    S. Sturm et al., High-precision measurement of the atomic mass of the electron. Nature 506, 467 (2014)ADSCrossRefGoogle Scholar
  53. 53.
    F. Köhler et al., The electron mass from g-factor measurements on hydrogen-like carbon \(^{12}\)C\(^{5+}\). J. Phys. B. 48 (2015)Google Scholar
  54. 54.
    J.S. Tiedeman, H.G. Robinson, Determination of \(g_J(^1\)H\(,1^2S_{1/2})/g_s(e)\): test of mass-independent corrections. Phys. Rev. Lett. 39, 602 (1977)ADSCrossRefGoogle Scholar
  55. 55.
    C.E. Johnson, H.G. Robinson, \(g_J\) factor of an ion: determination of \(g_J(^4\)He\(^+,1^2S_{1/2)}/g_J(^4\)He\(,2^3S_1)\). Phys. Rev. Lett. 45, 250 (1980)ADSCrossRefGoogle Scholar
  56. 56.
    H. Häffner et al., High-accuracy measurement of the magnetic moment anomaly of the electron bound in Hydrogen-like Carbon. Phys. Rev. Lett. 85, 5308 (2000)ADSCrossRefGoogle Scholar
  57. 57.
    H. Häffner et al., Double Penning trap technique for precise \(g\) factor determinations in highly charged ions. Eur. Phys. J. D 22, 163 (2003)ADSCrossRefGoogle Scholar
  58. 58.
    J. Verdú et al., Electronic \(g\) factor of Hydrogen-like Oxygen \(^{16}\)O\(^{7+}\). Phys. Rev. Lett. 92, 093002 (2004)ADSCrossRefGoogle Scholar
  59. 59.
    J. Verdú et al., Determination of the \(g\)-factor of single Hydrogen-like ions by mode coupling in a Penning Trap. Phys. Scr. T112, 68 (2004)ADSCrossRefGoogle Scholar
  60. 60.
    S. Sturm et al., g factor of hydrogen-like \(^{28}\)Si\(^{13+}\). Phys. Rev. Lett. 107, 023002 (2011)ADSCrossRefGoogle Scholar
  61. 61.
    A. Wagner et al., g factor of Lithium-like Silicon \(^{28}\)Si\(^{11+}\). Phys. Rev. Lett. 110, 033003 (2013)ADSCrossRefGoogle Scholar
  62. 62.
    F. Köhler et al., Isotope dependence of the Zeeman effect in lithium-like calcium. Nat. Comm. 7, 10246 (2016)CrossRefGoogle Scholar
  63. 63.
    B. Schabinger et al., Experimental g factor of hydrogenlike silicon-28. Eur. Phys. J. D 66, 71 (2012)ADSCrossRefGoogle Scholar
  64. 64.
    V.M. Shabaev, Transition probability between the hyperfine structure components of hydrogenlike ions and bound-electron \(g\)-factor. Can. J. Phys. 76, 907 (1998)ADSCrossRefGoogle Scholar
  65. 65.
    G.W.F. Drake (ed.), Handbook of Atomic, Molecular and Optical Physics (Springer, Heidelberg, 2006)Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.GSI Helmholtz Centre for Heavy Ion ResearchDarmstadtGermany

Personalised recommendations