Laser-Microwave Double-Resonance Spectroscopy

  • Manuel Vogel
Part of the Springer Series on Atomic, Optical, and Plasma Physics book series (SSAOPP, volume 100)


In special situations, optical and microwave spectroscopy can be combined to constitute a powerful tool that uses the high spectral resolution of the microwaves and the good detection properties of optical light. Here, we briefly discuss its application to the determination of magnetic moments of the nucleus and the electron bound in highly charged ions.


  1. 1.
    F.G. Major, G. Werth, High-resolution magnetic hyperfine resonance in harmonically bound ground-state \(^{199}\)Hg ions. Phys. Rev. Lett. 30, 1155 (1973)ADSCrossRefGoogle Scholar
  2. 2.
    M. McGuire, R. Petsch, G. Werth, Precision determination of the ground-state hyperfine separation in \(^{199}\)Hg\(^+\) using the ion-storage technique. Phys. Rev. A 17, 1999 (1978)ADSCrossRefGoogle Scholar
  3. 3.
    R. Blatt, G. Werth, Precision ground state Hfs-separation of \(^{137}\)Ba. Z. Phys. A 299, 93 (1981)ADSCrossRefGoogle Scholar
  4. 4.
    R. Blatt, H. Schnatz, G. Werth, Ultrahigh-resolution microwave spectroscopy on trapped \(^{171}\)Yb\(^+\) ions. Phys. Rev. Lett. 48, 1601 (1982)ADSCrossRefGoogle Scholar
  5. 5.
    X. Feng, G.Z. Li, G. Werth, High-precision hyperfine spectroscopy in M1–M1 double-resonance transitions on trapped \(^{207}\)Pb\(^+\). Phys. Rev. A 46, 2959 (1992)ADSCrossRefGoogle Scholar
  6. 6.
    T. Nakamura et al., Precision spectroscopy of the Zeeman splittings of the \(^9\)Be\(^+\) 2\(^2\)S\(_{1/2}\) hyperfine structure for nuclear structure studies. Opt. Commun. 205, 329 (2002)ADSCrossRefGoogle Scholar
  7. 7.
    G. Werth, V.N. Gheorghe, F.G. Major, Charged Particle Traps (Springer, Heidelberg, 2005)Google Scholar
  8. 8.
    G. Werth, V.N. Gheorghe, F.G. Major, Charged Particle Traps II (Springer, Heidelberg, 2009)CrossRefGoogle Scholar
  9. 9.
    T. Beier, The \(g_j\)-factor of a bound electron and the hyperfine structure splitting in hydrogenlike ions. Phys. Rep. 339, 79 (2000)ADSCrossRefGoogle Scholar
  10. 10.
    J.R. Crespo López-Urrutia, P. Beiersdorfer, D.W. Savin, K. Widmann, Direct observation of the spontaneous emission of the hyperfine transition \(F=4\) to \(F=3\) in ground state hydrogenlike \(^{165}\)Ho\(^{66+}\) in an electron beam ion trap. Phys. Rev. Lett. 77, 826 (1996)ADSCrossRefGoogle Scholar
  11. 11.
    J.R. Crespo López-Urrutia et al., Nuclear magnetization distribution radii determined by hyperfine transitions in the 1s level of H-like ions \(^{185}\)Re\(^{74+}\) and \(^{187}\)Re\(^{74+}\). Phys. Rev. A 57, 879 (1998)ADSCrossRefGoogle Scholar
  12. 12.
    P. Beiersdorfer et al., Hyperfine structure of hydrogenlike thallium isotopes. Phys. Rev. A 64, 032506 (2001)ADSCrossRefGoogle Scholar
  13. 13.
    P. Seelig et al., Ground state hyperfine splitting of hydrogenlike \(^{207}\)Pb\(^{81+}\) by laser excitation of a bunched ion beam in the GSI experimental storage ring. Phys. Rev. Lett. 81, 4824 (1998)ADSCrossRefGoogle Scholar
  14. 14.
    S. Borneis et al., Ground state hyperfine structure of heavy hydrogen like ions. Hyp. Int. 127, 305 (2000)ADSCrossRefGoogle Scholar
  15. 15.
    I. Klaft et al., Precision laser spectroscopy of the ground state hyperfine splitting of hydrogenlike \(^{209}\)Bi\(^{82+}\). Phys. Rev. Lett. 73, 2425 (1994)ADSCrossRefGoogle Scholar
  16. 16.
    P. Beiersdorfer, A.L. Osterheld, J.H. Scofield, J.R. Crespo López-Urrutia, K. Widmann, Measurement of QED and hyperfine splitting in the 2s\(_{1/2}\) - 2p\(_{3/2}\) X-ray transition in Li-like \(^{209}\)Bi\(^{80+}\). Phys. Rev. Lett. 80, 3022 (1998)ADSCrossRefGoogle Scholar
  17. 17.
    A.N. Artemyev, V.M. Shabaev, G. Plunien, G. Soff, V.A. Yerokhin, Vacuum-polarization corrections to the hyperfine splitting in heavy ions and to the nuclear magnetic moments. Phys. Rev. A 63, 062504 (2001)ADSCrossRefGoogle Scholar
  18. 18.
    V.M. Shabaev, A.N. Artemyev, V.A. Yerokhin, O.M. Zherebtsov, G. Soff, Towards a test of QED in investigations of the hyperfine splitting in heavy ions. Phys. Rev. Lett. 86, 3959 (2001)ADSCrossRefGoogle Scholar
  19. 19.
    V.A. Yerokhin, A.N. Artemyev, V.M. Shabaev, G. Plunien, All-orders results for the one-electron QED correction to the hyperfine structure in light H-like ions. Phys. Rev. A 72, 052510 (2005)ADSCrossRefGoogle Scholar
  20. 20.
    A.A. Elizarov, V.M. Shabaev, N.S. Oreshkina, I.I. Tupitsyn, T. Stoehlker, The hyperfine structure of heavy hydrogen-like ions: calculation based on experimental data on muonic atoms. Opt. Spectrosc. 100, 361 (2006)ADSCrossRefGoogle Scholar
  21. 21.
    D.L. Moskovkin, V.M. Shabaev, Zeeman effect of the hyperfine-structure levels in hydrogenlike ions. Phys. Rev. A 73, 052506 (2006)ADSCrossRefGoogle Scholar
  22. 22.
    D.L. Moskovkin, V.M. Shabaev, W. Quint, Zeeman effect of the hyperfine structure levels in lithiumlike ions. Phys. Rev. A 77, 063421 (2008)ADSCrossRefGoogle Scholar
  23. 23.
    A.V. Volotka, D.A. Glazov, I.I. Tupitsyn, N.S. Oreshkina, G. Plunien, V.M. Shabaev, Ground-state hyperfine structure of H-, Li-, and B-like ions in the intermediate-Z region. Phys. Rev. A 78, 062507 (2008)ADSCrossRefzbMATHGoogle Scholar
  24. 24.
    N.S. Oreshkina, D.A. Glazov, A.V. Volotka, V.M. Shabaev, I.I. Tupitsyn, G. Plunien, Radiative and interelectronic-interaction corrections to the hyperfine splitting in highly charged B-like ions. Phys. Lett. A 372, 675 (2008)ADSCrossRefzbMATHGoogle Scholar
  25. 25.
    D.A. Glazov, A.V. Volotka, V.M. Shabaev, I.I. Tupitsyn, G. Plunien, Evaluation of the screened QED corrections to the g factor and the hyperfine splitting of lithiumlike ions. Phys. Rev. A 81, 062112 (2010)ADSCrossRefGoogle Scholar
  26. 26.
    A.V. Volotka, D.A. Glazov, O.V. Andreev, V.M. Shabaev, I.I. Tupitsyn, G. Plunien, Test of many-electron QED effects in the hyperfine splitting of heavy high-Z ions. Phys. Rev. Lett. 108, 073001 (2012)ADSCrossRefGoogle Scholar
  27. 27.
    D. Budker, D.F. Kimball, D.P. DeMille, Atomic Physics (Oxford University Press, Oxford, 2004)Google Scholar
  28. 28.
    M. Vogel, W. Quint, Trap-assisted precision spectroscopy of forbidden transitions in highly charged ions. Phys. Rep. 490, 1 (2010)ADSCrossRefGoogle Scholar
  29. 29.
    H. Marxer, L. Spruch, Semiclassical estimation of the radiative mean lifetimes of hydrogenlike states. Phys. Rev. A 43, 1268 (1991)ADSCrossRefGoogle Scholar
  30. 30.
    M.W. Horbatsch, M. Horbatsch, E.A. Hessels, A universal formula for the accurate calculation of hydrogenic lifetimes. J. Phys. B 38, 1765 (2005)ADSCrossRefGoogle Scholar
  31. 31.
    A.N. Artemyev et al., Ab initio calculations of the 2 p3/2-2 p1/2 fine-structure splitting in boronlike ions. Phys. Rev. A 88, 032518 (2013)ADSCrossRefGoogle Scholar
  32. 32.
    W. Quint, D. Moskovkin, V.M. Shabaev, M. Vogel, Laser-microwave double-resonance technique for \(g\)-factor measurements in highly charged ions. Phys. Rev. A 78, 032517 (2008)ADSCrossRefGoogle Scholar
  33. 33.
    P. Raghavan, At. Data Nucl. Data Tables 42, 189 (1989)ADSCrossRefGoogle Scholar
  34. 34.
    M.G.H. Gustavsson, A.-M. Martensson-Pendrill, Need for remeasurements of nuclear magnetic dipole moments. Phys. Rev. A 58, 3611 (1998)ADSCrossRefGoogle Scholar
  35. 35.
    F.A. Jenkins, E. Segré, The quadratic Zeeman Effect. Phys. Rev. 55, 52 (1939)ADSCrossRefzbMATHGoogle Scholar
  36. 36.
    L.I. Schiff, H. Snyder, Theory of the quadratic Zeeman Effect. Phys. Rev. 55, 59 (1939)ADSCrossRefzbMATHGoogle Scholar
  37. 37.
    W.R.S. Garton, F.S. Tomkins, Diamagnetic Zeeman Effect and magnetic configuration mixing in long spectral series of BA I. Astrophys. J. 158, 839 (1969)ADSCrossRefGoogle Scholar
  38. 38.
    G. Feinberg, A. Rich, J. Sucher, Quadratic Zeeman effect in positronium. Phys. Rev. A 41, 3478 (1990)ADSCrossRefGoogle Scholar
  39. 39.
    M. Raoult, S. Guizard, D. Gauyacq, A. Matzkin, Quadratic Zeeman effect in Rydberg states of NO. J. Phys. B. 38, S171 (2005)ADSCrossRefGoogle Scholar
  40. 40.
    D. von Lindenfels et al., Experimental access to higher-order Zeeman effects by precision spectroscopy of highly charged ions in a Penning trap. Phys. Rev. A 87, 023412 (2013)ADSCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.GSI Helmholtz Centre for Heavy Ion ResearchDarmstadtGermany

Personalised recommendations