Radio-Frequency Spectroscopy: Penning-Trap Mass Spectrometry

  • Manuel Vogel
Part of the Springer Series on Atomic, Optical, and Plasma Physics book series (SSAOPP, volume 100)


This chapter takes a short look at mass spectrometry in Penning traps, which to some extent is one specific application of radio-frequency spectroscopy of the particle oscillations in the trap. We have a brief look at precision mass spectrometry, and then discuss mass spectrometry as an analytical tool for a quantitative determination of the trap content.


  1. 1.
    D.B. Pinegar, K. Blaum, T.P. Biesiadzinski, S.L. Zafonte, R.S. Van Dyck Jr., Stable voltage source for Penning trap experiments. Rev. Sci. Inst. 80, 064701 (2009)ADSCrossRefGoogle Scholar
  2. 2.
    D.J. Wineland, J.J. Bollinger, W.M. Itano, Laser-fluorescence mass spectroscopy. Phys. Rev. Lett. 50, 628 (1983)ADSCrossRefGoogle Scholar
  3. 3.
    E.A. Cornell et al., Single-ion cyclotron resonance measurement of M(CO\(^+\))/M(N\(_2^+\)). Phys. Rev. Lett. 63, 1674 (1989)ADSCrossRefGoogle Scholar
  4. 4.
    M. Redshaw, J. McDaniel, E.G. Myers, Dipole moment of PH+ and the atomic masses of \(^{28}\)Si, \(^{31}\)P by comparing cyclotron frequencies of two ions simultaneously trapped in a Penning trap. Phys. Rev. Lett. 100, 093002 (2008)ADSCrossRefGoogle Scholar
  5. 5.
    D.L. Farnham, R.S. van Dyck, P.B. Schwinberg, Determination of the electron’s atomic mass and the proton/electron mass ratio via Penning trap mass spectroscopy. Phys. Rev. Lett. 75, 3598 (1995)ADSCrossRefGoogle Scholar
  6. 6.
    S. Ulmer et al., High-precision comparison of the antiproton-to-proton charge-to-mass ratio. Nature 524, 196 (2015)ADSCrossRefGoogle Scholar
  7. 7.
    G. Gabrielse, A. Khabbaz, D.S. Hall, C. Heimann, H. Kalinowsky, W. Jhe, Precision mass spectroscopy of the antiproton and proton using simultaneously trapped particles. Phys. Rev. Lett. 82, 3198 (1999)ADSCrossRefGoogle Scholar
  8. 8.
    F. DiFilippo, V. Natarajan, M. Bradley, F. Palmer, D.E. Pritchard, Accurate atomic mass measurements from Penning trap mass comparisons of individual ions. Phys. Scr. T59, 144 (1995)ADSCrossRefGoogle Scholar
  9. 9.
    S. Brunner, T. Engel, A. Schmitt, G. Werth, Helium and deuterium mass ratios in a room temperature Penning trap. AIP Conf. Proc. 457, 125 (1999)ADSCrossRefGoogle Scholar
  10. 10.
    K. Blaum et al., Carbon clusters for absolute mass measurements at ISOLTRAP. Eur. Phys. J. A 15, 245 (2002)ADSCrossRefGoogle Scholar
  11. 11.
    A. Kellerbauer et al., From direct to absolute mass measurements: a study of the accuracy of ISOLTRAP. Eur. Phys. J. D 22, 53 (2003)ADSCrossRefGoogle Scholar
  12. 12.
    S. Rainville et al., An ion balance for ultra-high-precision atomic mass measurements. Science 303, 334 (2004)ADSCrossRefGoogle Scholar
  13. 13.
    R.S. Van Dyck Jr. et al., The UW-PTMS: systematic studies, measurement progress, and future improvements. Int. J. Mass Spectr. 251, 231 (2006)CrossRefGoogle Scholar
  14. 14.
    D.B. Pinegar, Tools for a precise tritium to helium-3 mass comparison, Ph.D. thesis, University of Washington, Seattle (2007)Google Scholar
  15. 15.
    C. Diehl et al., Progress with the MPIK/UW-PTMS in Heidelberg. Hyp. Int. 199, 291 (2011)ADSCrossRefGoogle Scholar
  16. 16.
    R.S. Van Dyck Jr., S.L. Zafonte, S. Van Liew, D.B. Pinegar, P.B. Schwinberg, Ultraprecise atomic mass measurement of the \(\alpha \) Particle and \(^4\)He. Phys. Rev. Lett. 92, 220802 (2004)CrossRefGoogle Scholar
  17. 17.
    P.J. Mohr, D.B. Newell, B.N. Taylor, Rev. Mod. Phys. 88, 035009 (2016)ADSCrossRefGoogle Scholar
  18. 18.
    J. King, J. Webb, M. Murphy, R. Carswell, Stringent null constraint on cosmological evolution of the proton-to-electron mass ratio. Phys. Rev. Lett. 101, 251304 (2008)ADSCrossRefGoogle Scholar
  19. 19.
    M. Murphy, V. Flambaum, S. Muller, C. Henkel, Strong limit on a variable proton-to-electron mass ratio from molecules in the distant universe. Science 320, 1611 (2008)ADSCrossRefGoogle Scholar
  20. 20.
    M.P. Bradley, J.V. Porto, S. Rainville, J.K. Thompson, D.E. Pritchard, Penning trap measurements of the masses of \(^{133}\)Cs, \(^{87,85}\)Rb, and \(^{23}\)Na with uncertainties \(<\) 0.2 ppb. Phys. Rev. Lett. 83, 4510 (1999)ADSCrossRefGoogle Scholar
  21. 21.
    G. Werth, V.N. Gheorghe, F.G. Major, Charged Particle Traps II (Springer, Heidelberg, 2009)CrossRefGoogle Scholar
  22. 22.
    M. Block et al., Discovery of a nuclear isomer in \(^{65}\)Fe with Penning trap mass spectrometry. Phys. Rev. Lett. 100, 132501 (2008)ADSCrossRefGoogle Scholar
  23. 23.
    K. Blaum et al., Population inversion of nuclear states by a Penning trap mass spectrometer. Europhys. Lett. 67, 586 (2004)ADSCrossRefGoogle Scholar
  24. 24.
    T. Eronen et al., Mass and QEC value of \(^{26}\)Si. Phys. Rev. C 79, 032802 (2009)ADSCrossRefGoogle Scholar
  25. 25.
    A. Kellerbauer et al., Direct mass measurements on the superallowed emitter \(^{74}\)Rb and its daughter \(^{74}\)Kr: isospin-symmetry-breaking correction for standard-model tests. Phys. Rev. Lett. 93, 072502 (2004)ADSCrossRefGoogle Scholar
  26. 26.
    S. Rainville et al., World year of physics: a direct test of \(E=mc^2\). Nature 438, 1096 (2005)ADSCrossRefGoogle Scholar
  27. 27.
    G. Bollen et al., The accuracy of heavy-ion mass measurements using time of flight-ion cyclotron-resonance in a Penning trap. J. Appl. Phys. 68, 4355 (1990)ADSCrossRefGoogle Scholar
  28. 28.
    L. Schweikhard, M. Lindinger, H.-J. Kluge, Parametric mode excitation/dipole mode detection Fourier transform ion cyclotron resonance spectrometry. Rev. Sci. Inst. 61, 1055 (1990)ADSCrossRefGoogle Scholar
  29. 29.
    D.L. Rempel, E.B. Ledford, S.K. Huang, M.L. Gross, Parametric mode operation of a hyperbolic Penning trap for Fourier transform mass spectrometry. Anal. Chem. 59, 2527 (1987)CrossRefGoogle Scholar
  30. 30.
    S. George et al., Ramsey method of separated oscillatory fields for high-precision Penning trap mass spectrometry. Phys. Rev. Lett. 98, 162501 (2007)ADSCrossRefGoogle Scholar
  31. 31.
    S. George et al., The Ramsey method in high-precision mass spectrometry with Penning traps: experimental results. Int. J. Mass Spectr. 264, 110 (2007)CrossRefGoogle Scholar
  32. 32.
    M. Kretzschmar, The Ramsey method in high-precision mass spectrometry with Penning traps: theoretical foundations. Int. J. Mass Spectr. 264, 122 (2007)CrossRefGoogle Scholar
  33. 33.
    M. Heck et al., One- and two-pulse quadrupolar excitation schemes of the ion motion in a Penning trap investigated with FT-ICR detection. Appl. Phys. B 107, 1019 (2012)ADSCrossRefGoogle Scholar
  34. 34.
    P. Ascher et al., PIPERADE: a Penning-trap isobar separator for the DESIR low-energy facility of SPIRAL2. EPJ Web of Conferences 66, 11002 (2014)CrossRefGoogle Scholar
  35. 35.
    E. Minaya Ramirez et al., Conception of PIPERADE: a high-capacity Penning-trap mass separator for high isobaric contamination at DESIR. Nucl. Inst. Meth. B 376, 298 (2016)ADSCrossRefGoogle Scholar
  36. 36.
    K. Blaum et al., Penning traps as a versatile tool for precise experiments in fundamental physics. Contemp. Phys. 51, 149 (2010)ADSCrossRefGoogle Scholar
  37. 37.
    E.G. Myers, The most precise atomic mass measurements in Penning traps. Int. J. Mass Spectr. 349–350, 107 (2013)CrossRefGoogle Scholar
  38. 38.
    K. Blaum, High-accuracy mass spectrometry with stored ions. Phys. Rep. 425, 1 (2006)ADSCrossRefGoogle Scholar
  39. 39.
    G. Bollen et al., Experiments with thermalized rare isotope beams from projectile fragmentation: a precision mass measurement of the superallowed \(\beta \) emitter \(^{38}\)Ca. Phys. Rev. Lett. 96, 152501 (2006)ADSCrossRefGoogle Scholar
  40. 40.
    M. Smith et al., First Penning-trap mass measurement of the exotic halo nucleus \(^{11}\)Li. Phys. Rev. Lett. 101, 202501 (2008)ADSCrossRefGoogle Scholar
  41. 41.
    E. Minaya Ramirez et al., Direct mapping of nuclear shell effects in the heaviest elements. Science 337, 1207 (2012)ADSCrossRefGoogle Scholar
  42. 42.
    M. Block, High-precision mass measurements of radionuclides in Penning traps, in: Fundamental Physics in Particle Traps, Springer Tracts in Modern Physics, vol 256 (Springer, Berlin, 2014)Google Scholar
  43. 43.
    M. Block, Mass measurements and ion-manipulation techniques applied to the heaviest elements, Nobel Symposium NS160 - Chemistry and Physics of Heavy and Superheavy Elements, EPJ Web of Conferences, vol 131, 05003 (2016)Google Scholar
  44. 44.
    M.B. Comisarow, Fourier transform ion cyclotron resonance spectroscopy. Chem. Phys. Lett. 25, 282 (1974)ADSCrossRefGoogle Scholar
  45. 45.
    A.G. Marshall, Fourier transform ion cyclotron resonance detection: principles and experimental configurations. Int. J. Mass Spectr. 215, 59 (2002)CrossRefGoogle Scholar
  46. 46.
    A.G. Marshall et al., Fourier transform ion cyclotron resonance mass spectrometry: a primer. Mass Spectrom. Rev. 17, 1 (1998)ADSCrossRefGoogle Scholar
  47. 47.
    D. Rodriguez et al., Broad-band FT-ICR MS for the Penning-trap mass spectrometer MATS. AIP Conf. Proc. 1265, 483 (2010)ADSCrossRefGoogle Scholar
  48. 48.
    M. Ubieto-Diaz, A broad-band FT-ICR Penning trap system for KATRIN. Int. J. Mass. Spectr. 288, 1 (2009)CrossRefGoogle Scholar
  49. 49.
    H. Häffner et al., Double Penning trap technique for precise \(g\) factor determinations in highly charged ions. Eur. Phys. J. D 22, 163 (2003)ADSCrossRefGoogle Scholar
  50. 50.
    W.C. Wiley, I.H. McLaren, Time-of-flight mass spectrometer with improved resolution. Rev. Sci. Inst. 26, 1150 (1955)ADSCrossRefGoogle Scholar
  51. 51.
    K.L. Brown, G.W. Tautfest, Faraday-cup monitors for high-energy electron beams. Rev. Sci. Instr. 27, 696 (1956)ADSCrossRefGoogle Scholar
  52. 52.
    J. Wiza, Microchannel plate detectors. Nucl. Inst. Meth. 162, 587 (1979)ADSCrossRefGoogle Scholar
  53. 53.
    J.S. Allen, The detection of single positive ions, electrons and photons by a secondary electron multiplier. Phys. Rev. 55, 966 (1939)ADSCrossRefGoogle Scholar
  54. 54.
    J.S. Allen, An improved electron multiplier particle counter. Rev. Sci. Inst. 18, 739 (1947)ADSCrossRefGoogle Scholar
  55. 55.
    S.C. Curran, Counting Tubes, Theory and Applications (Academic Press, New York, 1949)Google Scholar
  56. 56.
    M. Vogel, D.F.A. Winters, H. Ernst, O. Kester, H. Zimmermann, Scintillation light produced by slow, highly-charged ions. Nucl. Inst. Meth. B 263, 518 (2007)ADSCrossRefGoogle Scholar
  57. 57.
    W.R. Leo, Techniques for Nuclear and Particle Physics Experiments (Springer, Berlin, 1994)CrossRefGoogle Scholar
  58. 58.
    W. Göpel, J. Hesse, J.N. Zemel, Sensors, Optical Sensors (Wiley, New York, 2008). ISBN 978-3-527-62070-8Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.GSI Helmholtz Centre for Heavy Ion ResearchDarmstadtGermany

Personalised recommendations