Particle Ensemble Density: Rotating Wall

  • Manuel Vogel
Part of the Springer Series on Atomic, Optical, and Plasma Physics book series (SSAOPP, volume 100)


The particle number density and shape of an ensemble of confined in a Penning trap can be controlled by the so-called ‘rotating wall technique’, which is a specific, non-resonant excitation of the ensemble’s rotation. Here, we briefly discuss the requirements, technical implementations, and the phenomenology of such a rotating wall, mainly when used for compression of the confined ensemble.


  1. 1.
    D.J. Wineland, J.J. Bollinger, W.M. Itano, J.D. Prestage, Angular momentum of trapped atomic particles. J. Opt. Soc. Am. B 2, 1721 (1985)ADSCrossRefGoogle Scholar
  2. 2.
    J.J. Bollinger et al., Electrostatic modes of ion-trap plasmas. Phys. Rev. A 48, 525 (1993)ADSCrossRefGoogle Scholar
  3. 3.
    D.J. Heinzen et al., Rotational equilibria and low-order modes of a non-neutral ion plasma. Phys. Rev. Lett. 66, 2080 (1991)ADSCrossRefGoogle Scholar
  4. 4.
    M. Asprusten, S. Worthington, R.C. Thompson, Theory and simulation of ion Coulomb crystal formation in a Penning trap. Appl. Phys. B 114, 157 (2014)ADSCrossRefGoogle Scholar
  5. 5.
    F. Anderegg, Rotating wall technique and centrifugal separation, in Trapped Charged Particles, ed. by M. Knoop, N. Madsen, R.C. Thompson (World Scientific, Singapore, 2016)Google Scholar
  6. 6.
    S. Bharadia, M. Vogel, D.M. Segal, R.C. Thompson, Dynamics of laser-cooled Ca\(^+\) ions in a Penning trap with a rotating wall. Appl. Phys. B 107, 1105 (2012)ADSCrossRefGoogle Scholar
  7. 7.
    X.P. Huang, J.J. Bollinger, T.B. Mitchell, W.M. Itano, Phase-locked rotation of crystallized non-neutral plasmas by rotating electric fields. Phys. Rev. Lett. 80, 73 (1998)ADSCrossRefGoogle Scholar
  8. 8.
    L.R. Brewer et al., Static properties of a non-neutral \(^9\)Be\(^+\)-ion plasma. Phys. Rev. A 38, 859 (1988)ADSCrossRefGoogle Scholar
  9. 9.
    M.M. Schauer, T.B. Mitchell, M.H. Holzscheiter, D.C. Barnes, Electron Penning trap for the generation of high density non-neutral plasmas. Rev. Sci. Instrum. 68, 3340 (1997)ADSCrossRefGoogle Scholar
  10. 10.
    D.C. Barnes, M.M. Schauer, K.R. Umstadter, L. Chacon, G.H. Miley, Electron equilibrium and confinement in a modified Penning trap and its application to Penning fusion. Phys. Plasmas 7, 1693 (2000)ADSCrossRefGoogle Scholar
  11. 11.
    M.M. Schauer, D.C. Barnes, K.R. Umstadter, Physics of non-thermal Penning-trap electron plasma and application to ion trapping. Phys. Plasmas 11, 9 (2004)ADSCrossRefGoogle Scholar
  12. 12.
    D.C. Barnes, T.B. Mitchell, M.M. Schauer, Beyond the Brillouin limit with the Penning fusion experiment. Phys. Plasmas 4, 1745 (1997)ADSCrossRefGoogle Scholar
  13. 13.
    L. Chacon, D.C. Barnes, Stability of thermal ions confined by electron clouds in Penning fusion systems. Phys. Plasmas 7, 4774 (2000)ADSCrossRefGoogle Scholar
  14. 14.
    G. Werth, V.N. Gheorghe, F.G. Major, Charged Particle Traps (Springer, Heidelberg, 2005)Google Scholar
  15. 15.
    M. Vogel, W. Quint, G. Paulus, Th Stöhlker, A Penning trap for advanced studies with particles in extreme laser fields. Nucl. Instr. Meth. B 285, 65 (2012)ADSCrossRefGoogle Scholar
  16. 16.
    W. Quint, D. Moskovkin, V.M. Shabaev, M. Vogel, Laser-microwave double-resonance technique for \(g\)-factor measurements in highly charged ions. Phys. Rev. A 78, 032517 (2008)ADSCrossRefGoogle Scholar
  17. 17.
    D. von Lindenfels et al., Experimental access to higher-order Zeeman effects by precision spectroscopy of highly charged ions in a Penning trap. Phys. Rev. A 87, 023412 (2013)ADSCrossRefGoogle Scholar
  18. 18.
    X.P. Huang et al., Steady-state confinement of non-neutral plasmas by rotating electric fields. Phys. Rev. Lett. 78, 875 (1997)ADSCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.GSI Helmholtz Centre for Heavy Ion ResearchDarmstadtGermany

Personalised recommendations