Impinging Jet Ignition

  • Sayan Biswas
Part of the Springer Theses book series (Springer Theses)


Turbulent jet ignition can reliably be used to ignite an ultra-lean fuel/air mixture as illustrated in previous chapters. This ignition technique can be utilized in various applications ranging from pulse detonation engines, wave rotor combustor explosions, to supersonic combustors and natural gas engines. Compared to a conventional spark plug, the hot jet has a much larger surface area leading to multiple ignition sites on its surface which can enhance the probability of successful ignition and cause faster flame propagation and heat release. In short, turbulent jet ignition has many advantages over conventional ignition system.


  1. 1.
    Viskanta, R.: Heat transfer to impinging isothermal gas and flame jets. Exp. Thermal Fluid Sci. 6(2), 111–134 (1993)CrossRefGoogle Scholar
  2. 2.
    Martin, H.: Heat and mass transfer between impinging gas jets and solid surfaces. Adv. Heat Tran. 13, 1–60 (1977)CrossRefGoogle Scholar
  3. 3.
    Donaldson, C.D., Snedeker, R.S.: A study of free jet impingement. Part 1. Mean properties of free and impinging jets. J. Fluid Mech. 45(2), 281–319 (1971)CrossRefGoogle Scholar
  4. 4.
    Jambunathan, K., et al.: A review of heat transfer data for single circular jet impingement. Int. J. Heat Fluid Flow. 13(2), 106–115 (1992)CrossRefGoogle Scholar
  5. 5.
    Malikov, G.K., et al.: Direct flame impingement heating for rapid thermal materials processing. Int. J. Heat Mass Transf. 44(9), 1751–1758 (2001)CrossRefGoogle Scholar
  6. 6.
    Baukal, C.E., Gebhart, B.: A review of empirical flame impingement heat transfer correlations. Int. J. Heat Fluid Flow. 17(4), 386–396 (1996)CrossRefGoogle Scholar
  7. 7.
    Baukal, C.E., Gebhart, B.: A review of semi-analytical solutions for flame impingement heat transfer. Int. J. Heat Mass Transf. 39(14), 2989–3002 (1996)CrossRefGoogle Scholar
  8. 8.
    Tajik, A.R., Hindasageri, V.: A numerical investigation on heat transfer and emissions characteristics of impinging radial jet reattachment combustion (RJRC) flame. Appl. Therm. Eng. 89, 534–544 (2015)CrossRefGoogle Scholar
  9. 9.
    Wang, Q., Zhao, C.Y., Zhang, Y.: Time-resolved 3D investigation of the ignition process of a methane diffusion impinging flame. Exp. Thermal Fluid Sci. 62, 78–84 (2015)CrossRefGoogle Scholar
  10. 10.
    Biswas, S., et al.: On ignition mechanisms of premixed CH4/air and H2/air using a hot turbulent jet generated by pre-chamber combustion. Appl. Therm. Eng. 106, 925–937 (2016)CrossRefGoogle Scholar
  11. 11.
    Tawfek, A.A.: Heat transfer studies of the oblique impingement of round jets upon a curved surface. Heat Mass Transf. 38(6), 467–475 (2002)CrossRefGoogle Scholar
  12. 12.
    Sparrow, E.M., Lovell, B.J.: Heat transfer characteristics of an obliquely impinging circular jet. J. Heat Transf. 102(2), 202 (1980)CrossRefGoogle Scholar
  13. 13.
    Biswas, S., Qiao, L.: A numerical investigation of ignition of ultra-lean premixed H2/air mixtures by pre-chamber supersonic hot jet. SAE Int. J. Engines. 10(5), 2231–2247 (2017)CrossRefGoogle Scholar
  14. 14.
    ANSYS.: ANSYS Fluent Academic Research, Release 15.0 (2015)Google Scholar
  15. 15.
    Connaire, M.O., Curran, H.J., Simmie, J.M., Pitz, W.J., Westbrook, C.K.: A comprehensive modeling study of hydrogen oxidation. In. J. Chem. Kinet. 36(11), 603–622 (2004)CrossRefGoogle Scholar
  16. 16.
    Bergman, T.L., Incropera, F.P.: Fundamentals of Heat and Mass Transfer, 6th edn, John Wiley, Hoboken (2007)Google Scholar
  17. 17.
    Beitelmal, A.H., Saad, M.A., Patel, C.D.: The effect of inclination on the heat transfer between a flat surface and an impinging two-dimensional air jet. Int. J. Heat Fluid Flow. 21(2), 156–116 (2000)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Sayan Biswas
    • 1
  1. 1.School of Aeronautics and AstronauticsPurdue UniversityWest LafayetteUSA

Personalised recommendations