Skip to main content

Introduction

  • Chapter
  • First Online:
Physics of Turbulent Jet Ignition

Part of the book series: Springer Theses ((Springer Theses))

Abstract

Greenhouse gases trap heat and make the planet warmer. According to the Environmental Protection Agency (EPA), the four major greenhouse gases (GHG) are CO2, methane, oxides of nitrogen (NOx), and fluorinated gases such as hydrofluorocarbon, perfluorocarbon, sulfur hexafluoride, nitrogen trifluoride, etc. [1]. Figure 1.1 shows US greenhouse gas emissions in the years 1990–2015. Human activities are responsible for almost all the increase in greenhouse gases in the atmosphere over the last 150 years [2, 3]. Figure 1.2 shows the greenhouse gas emissions in the USA in 2015. One of the largest contributors toward greenhouse emission is carbon dioxide. Major production of CO2 is from burning fossil fuels such as coal, natural gas, and oil. Methane is emitted during the production and transport of coal, natural gas, and oil [4].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. United States: Environmental Protection Agency. Office of Policy, P., and evaluation. In: Inventory of U.S. Greenhouse Gas Emissions and Sinks: 1990–2014. U.S. Environmental Protection Agency, Washington, DC (2016)

    Google Scholar 

  2. Auxt, J.A., Curtis, W.M.: Global Warming : and the Creator's Plan, p. 169. Master Books, Green Forest (2009)

    Google Scholar 

  3. Officer, C.B., Page, J., Officer, C.B. (eds.): When the Planet Rages : Natural Disasters, Global Warming, and the Future of the Earth. Rev. and updated ed, vol. xvii, p. 227. Oxford University Press, Oxford, UK/New York (2009)

    Google Scholar 

  4. Intergovernmental Panel on Climate Change: Climate Change : the IPCC Response Strategies, vol. lxii, p. 272. Island Press, Washington, DC (1991)

    Google Scholar 

  5. United States: Environmental Protection Agency. In: Office of Policy, P., and Evaluation., Inventory of U.S. Greenhouse Gas Emissions and Sinks: 1990–2015. U.S. Environmental Protection Agency, Washington, DC (2017)

    Google Scholar 

  6. Easton, T.A.: Environmental studies. In: Classic Edition Sources, vol. xxi, 3rd edn, p. 228. McGraw-Hill Higher Education, New York (2009)

    Google Scholar 

  7. Parry, M., Canziani, O., Palutikof, J., Linden, P., Hanson, C.: Climate Change. In: Impacts, Adaptation and Vulnerability, pp. 10013–12473. Cambridge University Press, New York (2007)

    Google Scholar 

  8. GAO: Legislative Branch: Energy Audits are Key to Strategy for Reducing Greenhouse Gas Emissions. United States Government Accountability Office. GAO-07-516 (2007)

    Google Scholar 

  9. Woodcock, J., Phil, E., Tonne, C., Armstrong, B.G., Ashiru, O., Banister, D., Beevers, S., Chalabi, Z., Chowdhury, Z., Cohen, A., Franco, O.H., Haines, A., Hickman, R., Lindsay, G., Mittal, I., Mohan, D., Tiwari, G., Woodward, A., Roberts, I.: Public health benefits of strategies to reduce greenhouse-gas emissions: urban land transport. Lancet. 374(9705), 1930–1943 (2009)

    Article  Google Scholar 

  10. United States, E.P.A: Office of Transportation and Air Quality, Non-conformance Penalties for Heavy-Duty Diesel Engines Subject to the 2010 NOx Emission Standard. U.S. Environmental Protection Agency, Office of Transportation and Air Quality, Washington, DC (2012)

    Google Scholar 

  11. Caterpillar: Cat estimates $40 million expense for EPA non-conformance penalties (NCPs) for post-October, 2002 diesel engines. Diesel Fuel News. 7(5), 7–10 (2003)

    Google Scholar 

  12. Peckham, J.: U.S. EPA doubles ‘non-conformance penalties’ for navistar 2012 diesel trucks. Diesel Fuel News. 16(34), 4–5 (2012)

    MathSciNet  Google Scholar 

  13. Standards., N.R.C.U.S.B.o.E.S.a.T.N.R.C.U.S.C.o.S.P.i.S.M.S.E: State and Federal Standards for Mobile Source Emissions. National Academies Press, Washington, DC (2006)

    Google Scholar 

  14. Dunn-Rankin, D.: Lean Combustion : Technology and Control, vol. xi, p. 261. Academic Press, Amsterdam/Boston (2008.) 8 p. of plates

    Google Scholar 

  15. Kim, K., et al.: Evaluation of injection and ignition schemes for the ultra-lean combustion direct-injection LPG engine to control particulate emissions. Appl. Energy. 194, 123–135 (2017)

    Article  Google Scholar 

  16. Lieuwen, T.C., Yang, V.: Combustion instabilities in gas turbine engines : operational experience, fundamental mechanisms and modeling. In: Progress in Astronautics and Aeronautics, vol. xiv, p. 657. American Institute of Aeronautics and Astronautics, Reston (2005)

    Google Scholar 

  17. Society of Automotive Engineers: Homogeneous Charge Compression Ignition (HCCI) Combustion 2004, p. 280. Society of Automotive Engineers, Warrendale (2004)

    Google Scholar 

  18. Zabetakis, M.G., Instrument Society of America: Installation, Operation, and Maintenance of Combustible Gas Detection Instruments : Recommended Practice, p. 153. Instrument Society of America, Research Triangle Park (1987)

    Google Scholar 

  19. Zabetakis, M.G.: Flammability Characteristics of Combustible Gases and Vapors, vol. vii, p. 121. U.S. Dept. of the Interior, Bureau of Mines; for sale by the Superintendent of Documents, U.S. Govt. Print. Off, Washington (1965)

    Google Scholar 

  20. Gholamisheeri, M., Wichman, I.S., Toulson, E.: A study of the turbulent jet flow field in a methane fueled turbulent jet ignition (TJI) system. Combust. Flame. 183, 194–206 (2017)

    Article  Google Scholar 

  21. Wang, Z., et al.: Experimental study of microwave resonance plasma ignition of methane–air mixture in a constant volume cylinder. Combust. Flame. 162(6), 2561–2568 (2015)

    Article  Google Scholar 

  22. Guan, Y., Zhao, G., Xiao, X.: Design and experiments of plasma jet igniter for aeroengine. Propuls. Pow. Res. 2(3), 188–193 (2013)

    Article  Google Scholar 

  23. An, B., et al.: Experimental investigation on the impacts of ignition energy and position on ignition processes in supersonic flows by laser induced plasma. Acta Astronaut. 137, 444–449 (2017)

    Article  Google Scholar 

  24. Li, X., et al.: Experimental investigation on laser-induced plasma ignition of hydrocarbon fuel in scramjet engine at takeover flight conditions. Acta Astronaut. 138, 79–84 (2017)

    Article  Google Scholar 

  25. Glassman, I., Yetter, R.A.: Combustion, vol. xx, 4th edn, p. 773. Academic Press, Amsterdam/Boston (2008)

    Google Scholar 

  26. Semenov, N.N.: Some Problems in Chemical Kinetics and Reactivity, 2nd edn. Princeton University Press, Princeton (1958)

    Google Scholar 

  27. Law, C.K.: Combustion Physics, vol. xviii, p. 722. Cambridge University Press, Cambridge, UK/New York (2006)

    Book  Google Scholar 

  28. Healey, S., Jaccard, M.: Abundant low-cost natural gas and deep GHG emissions reductions for the United States. Energy Policy. 98, 241–253 (2016)

    Article  Google Scholar 

  29. Arezki, R., Fetzer, T., Pisch, F.: On the comparative advantage of U.S. manufacturing: evidence from the shale gas revolution. J. Int. Econ. 107, 34–59 (2017)

    Article  Google Scholar 

  30. Gurz, M., et al.: The meeting of hydrogen and automotive: a review. Int. J. Hydrog. Energy. 42(36), 23334–23346 (2017)

    Article  Google Scholar 

  31. Reddi, K., et al.: Building a Hydrogen Infrastructure in the United States, pp. 293–319 (2016) https://www.sciencedirect.com/science/article/pii/B9781782423645000130; https://doi.org/10.1016/B978-1-78242-364-5.00013-0

  32. Talus, K.: United States natural gas markets, contracts and risks: what lessons for the European Union and Asia-Pacific natural gas markets? Energy Policy. 74, 28–34 (2014) https://www.sciencedirect.com/science/article/pii/S0301421514004510; https://doi.org/10.1016/j.enpol.2014.07.023

    Article  Google Scholar 

  33. Sperling, D., Gordon, D.: Two Billion Cars: Driving Toward Sustainability. Oxford University Press, Oxford, UK/New York (2009)

    Google Scholar 

  34. Andress, D., Nguyen, T.D., Das, S.: Reducing GHG emissions in the United States' transportation sector. Energy Sustain. Dev. 15(2), 117–136 (2011)

    Article  Google Scholar 

  35. Heywood, J.B.: Internal combustion engine fundamentals. In: McGraw-Hill Series in Mechanical Engineering, vol. xxix, p. 930. McGraw-Hill, New York (1988.) 2 p. of plates

    Google Scholar 

  36. Kim, T.Y., et al.: The effects of stratified lean combustion and exhaust gas recirculation on combustion and emission characteristics of an LPG direct injection engine. Energy. 115, 386–396 (2016)

    Article  Google Scholar 

  37. Murase, E., et al.: Initiation of combustion in lean mixtures by flame jets. Combust. Sci. Technol. 113(1), 167–177 (2010)

    Article  Google Scholar 

  38. Li, J., Yuan, L., Mongia, H.C.: Simulation of combustion characteristics in a hydrogen fuelled lean single-element direct injection combustor. Int. J. Hydrog. Energy. 42(5), 3536–3548 (2017)

    Article  Google Scholar 

  39. Rapp, V., Killingsworth, N., Therkelsen, P., Evans, R.: Chapter 4, Lean-Burn Internal Combustion Engines, pp. 111–146. Elsevier Inc (2016) https://www.sciencedirect.com/science/book/9780128045572. ISBN: 978-0-12-804557-2

    Chapter  Google Scholar 

  40. Zhou, F., et al.: Effects of lean combustion coupling with intake tumble on economy and emission performance of gasoline engine. Energy. 133, 366–379 (2017)

    Article  Google Scholar 

  41. Wolfhard, H.G.: The ignition of combustible mixtures by hot gases. J. Jet Propuls. 28(12), 798–804 (1958)

    Article  Google Scholar 

  42. GussakGussak, L.A.: The role of chemical activity and turbulence intensity in Prechamber-torch organization of combustion of a stationary flow of a fuel-air mixture. In: International Congress & Exposition, Detroit (1983)

    Google Scholar 

  43. Gussak, L., Karpov, V., Tikhonov, Y.: The Application of Lag-Process in Prechamber Engines. SAE Technical Paper 790692 (1979)

    Google Scholar 

  44. Gussak, L.A., M. Turkish, D. Siegla, High Chemical Activity of Incomplete Combustion Products and a Method of Prechamber Torch Ignition for Avalanche Activation of Combustion in Internal Combustion Engines. SAE Technical Paper 750890 (1975)

    Google Scholar 

  45. Murase, E., et al.: Initiation of combustion in lean mixtures by flame jets. Combust. Sci. Technol. 113(1), 167–177 (1996)

    Article  Google Scholar 

  46. Oppenheim, A.K.: Quest for controlled combustion engines. In: International Congress and Exposition, Detroit (1988)

    Google Scholar 

  47. Oppenheim, A., et al.: Jet Ignition of an Ultra-Lean Mixture. SAE Technical Paper 780637 (1978)

    Google Scholar 

  48. Ghoniem, A.F., Oppenheim, A.K., Chen, D.Y.: Experimental and Theoretical Study of Combustion Jet Ignition. California University, Berkeley (1983)

    Google Scholar 

  49. Pitt, P.L., Ridley, J.D., Clemilnts, R.M.: An ignition system for ultra lean mixtures. Combust. Sci. Technol. 35(5–6), 277–285 (2007)

    Google Scholar 

  50. Yamaguchi, S., Ohiwa, N., Hasegawa, T.: Ignition and burning process in a divided chamber bomb. Combust. Flame. 59(2), 177–187 (1985)

    Article  Google Scholar 

  51. Wallesten, J., Chomiak, J.: Investigation of spark position effects in a small pre-chamber on ignition and early flame propagation. In: International Fall Fuels and Lubricants Meeting and Exposition, Baltimore (2000)

    Google Scholar 

  52. Elhsnawi, M., Teodorczyk, A.: Studies of mixing and ignition in hydrogen-oxygen mixture with hot inert gas injection. In: Proceedings of the European Combustion Meeting. Warsaw University of Technology ITC, Nowowiejska, Warszawa (2005)

    Google Scholar 

  53. Sadanandan, R., et al.: Detailed investigation of ignition by hot gas jets. Proc. Combust. Inst. 31(1), 719–726 (2007)

    Article  Google Scholar 

  54. Sadanandan, R., et al.: 2D mixture fraction studies in a hot-jet ignition configuration using NO-LIF and correlation analysis. Flow Turb. Combust. 86(1), 45–62 (2010)

    Article  Google Scholar 

  55. Gholamisheeri, M., et al.: Rapid compression machine study of a premixed, variable inlet density and flow rate, confined turbulent jet. Combust. Flame. 169, 321–332 (2016)

    Article  Google Scholar 

  56. Toulson, E., et al.: Visualization of propane and natural gas spark ignition and turbulent jet ignition combustion. SAE Int. J. Engines. 5(4), 1821–1835 (2012)

    Article  Google Scholar 

  57. Toulson, E., Watson, H., Attard, W.: Gas Assisted Jet Ignition of Ultra-Lean LPG in a Spark Ignition Engine. SAE Technical Paper 2009-01-0506 (2009)

    Google Scholar 

  58. Toulson, E., Watson, H., Attardm, W.: Modeling Alternative Pre-chamber Fuels in Jet Assisted Ignition of Gasoline and LPG. SAE Technical Paper 2009-01-0721 (2009)

    Google Scholar 

  59. Attard, W.: Turbulent jet ignition pre-chamber combustion system for spark ignition engines. MAHLE Powertrain LLC: US 20120103302 A1 (2012)

    Google Scholar 

  60. Attard, W.P., et al.: A New Combustion System Achieving High Drive Cycle Fuel Economy Improvements in a Modern Vehicle Powertrain. SAE Technical Paper 2011-01-0664 (2011)

    Google Scholar 

  61. Attard, W.P., Parsons, P.: Flame kernel development for a spark initiated pre-chamber combustion system capable of high load, high efficiency and near zero NOx emissions. SAE Int. J. Engines. 3(2), 408–427 (2010)

    Article  Google Scholar 

  62. Perera, I., Wijeyakulasuriya, S., Nalim, R.: Hot Combustion Torch Jet Ignition Delay Time for Ethylene-Air Mixtures. In: 49th AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition, Aerospace Sciences Meetings (2011) https://doi.org/10.2514/6.2011-95; https://arc.aiaa.org/doi/abs/10.2514/6.2011-95

  63. Carpio, J., et al.: Critical radius for hot-jet ignition of hydrogen–air mixtures. Int. J. Hydrog. Energy. 38(7), 3105–3109 (2013)

    Article  Google Scholar 

  64. Karimi, A., Rajagopal, M., Nalim, R.: Traversing hot-jet ignition in a constant-volume combustor. J. Eng. Gas Turbines Power. 136(4), 041506 (2013)

    Article  Google Scholar 

  65. Shah, A., Tunestal, P., Johansson, B.: Effect of Pre-Chamber Volume and Nozzle Diameter on Pre-Chamber Ignition in Heavy Duty Natural Gas Engines, SAE Technical Paper 2015-01-0867, vol. 1, (2015) https://doi.org/10.4271/2015-01-0867. https://www.sae.org/publications/technical-papers/content/2015-01-0867/

  66. Shah, A., Tunestål, P., Johansson, B.: CFD Simulations of Pre-Chamber Jets Mixing Characteristics in a Heavy Duty Natural Gas Engine. SAE Technical Paper 2015-01-1890 (2015)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Biswas, S. (2018). Introduction. In: Physics of Turbulent Jet Ignition. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-319-76243-2_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-76243-2_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-76242-5

  • Online ISBN: 978-3-319-76243-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics