Advertisement

Results

  • Falah AlobaidEmail author
Chapter
Part of the Springer Tracts in Mechanical Engineering book series (STME)

Abstract

Studies on dynamic process simulation and computational fluid dynamics applied to different thermal power plant technologies are presented in this chapter.

References

  1. Abad A, Adánez J, Cuadrat A, García-Labiano F, Gayán P, Luis F (2011) Kinetics of redox reactions of ilmenite for chemical-looping combustion. Chem Eng Sci 66:689–702CrossRefGoogle Scholar
  2. Al-Maliki WAK, Alobaid F, Kez V, Epple B (2016a) Modelling and dynamic simulation of a parabolic trough power plant. J Process Control 39:123–138CrossRefGoogle Scholar
  3. Al-Maliki WAK, Alobaid F, Starkloff R, Kez V, Epple B (2016b) Investigation on the dynamic behaviour of a parabolic trough power plant during strongly cloudy days. Appl Therm EngGoogle Scholar
  4. Almohammed N, Alobaid F, Breuer M, Epple B (2014) A comparative study on the influence of the gas flow rate on the hydrodynamics of a gas-solid spouted fluidized bed using Euler-Euler and Euler–Lagrange/DEM models. Powder Technol 264:343–364CrossRefGoogle Scholar
  5. Alobaid F (2013) 3D Modelling and simulation of reactive fluidized beds for conversion of biomass with discrete element method. tuprints, GermanyGoogle Scholar
  6. Alobaid F (2018a) Dynamic simulation and flow stability analysis of a vertical natural circulation heat recovery steam generator. Appl Energy, SubmittedGoogle Scholar
  7. Alobaid F (2018b) Start-up improvement of a supplementary-fired large combined-cycle power plant. J Process Control 64:71–88Google Scholar
  8. Alobaid F, Epple B (2013) Improvement, validation and application of CFD/DEM model to dense gas-solid flow in a fluidized bed. Particuology 11:514–526CrossRefGoogle Scholar
  9. Alobaid F, Postler R, Ströhle J, Epple B, Kim H-G (2008) Modeling and investigation start-up procedures of a combined cycle power plant. Appl Energy 85:1173–1189CrossRefGoogle Scholar
  10. Alobaid F, Ströhle J, Epple B, Kim H-G (2009) Dynamic simulation of a supercritical once-through heat recovery steam generator during load changes and start-up procedures. Appl Energy 86:1274–1282CrossRefGoogle Scholar
  11. Alobaid F, Busch J-P, Ströhle J, Epple B (2012a) Investigations on torrefied biomass for co-combustion in pulverized coal-fired furnaces. VGB PowerTechGoogle Scholar
  12. Alobaid F, Pfeiffer S, Epple B, Seon C-Y, Kim H-G (2012b) Fast start-up analyses for Benson heat recovery steam generator. Energy 46:295–309CrossRefGoogle Scholar
  13. Alobaid F, Baraki N, Epple B (2014a) Investigation into improving the efficiency and accuracy of CFD/DEM simulations. Particuology 16:41–53CrossRefGoogle Scholar
  14. Alobaid F, Karner K, Belz J, Epple B, Kim H-G (2014b) Numerical and experimental study of a heat recovery steam generator during start-up procedure. Energy 64:1057–1070CrossRefGoogle Scholar
  15. Alobaid F, Ohlemüller P, Ströhle J, Epple B (2015a) Extended Euler-Euler model for the simulation of a 1 MWth chemical–looping pilot plant. Energy 93:2395–2405CrossRefGoogle Scholar
  16. Alobaid F, Starkloff R, Pfeiffer S, Karner K, Epple B, Kim H-G (2015b) A comparative study of different dynamic process simulation codes for combined cycle power plants–Part A: part loads and off-design operation. Fuel 153:692–706CrossRefGoogle Scholar
  17. Alobaid F, Starkloff R, Pfeiffer S, Karner K, Epple B, Kim H-G (2015c) A comparative study of different dynamic process simulation codes for combined cycle power plants–Part B: start-up procedure. Fuel 153:707–716CrossRefGoogle Scholar
  18. Alobaid F, Abed Kattea Al-Malikia W, Lanz T, Haaf M, Brachthäuser A, Epple B, Zorbach I (2018) Dynamic simulation of a municipal solid waste incinerator. Energy 149:230–249Google Scholar
  19. Anderson TB, Jackson R (1967) Fluid mechanical description of fluidized beds. Equations of motion. Ind Eng Chem Fundam 6:527–539CrossRefGoogle Scholar
  20. Badzioch S, Hawksley PGW (1970) Kinetics of thermal decomposition of pulverized coal particles. Ind Eng Chem Process Des Dev 9:521–530CrossRefGoogle Scholar
  21. Baum M, Street P (1971) Predicting the combustion behaviour of coal particles. Combust Sci Technol 3:231–243CrossRefGoogle Scholar
  22. Benim A, Epple B, Krohmer B (2005) Modelling of pulverised coal combustion by a Eulerian-Eulerian two-phase flow formulation. Prog Comput Fluid Dyn Int J 5:345–361CrossRefzbMATHGoogle Scholar
  23. Bhatia S, Perlmutter D (1981) A random pore model for fluid-solid reactions: II. Diffusion and transport effects. AIChE J 27:247–254CrossRefGoogle Scholar
  24. Bhatia S, Perlmutter D (1983) Effect of the product layer on the kinetics of the CO2-lime reaction. AIChE J 29:79–86CrossRefGoogle Scholar
  25. British Coal Utilisation Research, A., Field MA (1967) Combustion of pulverised coal. B.C.U.R.A., Leatherhead (Sy.)Google Scholar
  26. Di Renzo A, Di Maio FP (2004) Comparison of contact-force models for the simulation of collisions in DEM-based granular flow codes. Chem Eng Sci 59:525–541CrossRefGoogle Scholar
  27. Epple B, Leithner R, Linzer W, Walter H (2012) Simulation von Kraftwerken und Feuerungen. Springer, BerlinGoogle Scholar
  28. Epple B, Ströhle J, Alobaid F, Busch J-P (2014) Qualifizierung torrefizierter biogener Reststoffe für den Einsatz in KraftwerksfeuerungenGoogle Scholar
  29. Ferziger JH, Perić M (2002) Computational methods for fluid dynamics, 3rd edn. Springer, BerlinCrossRefzbMATHGoogle Scholar
  30. Garcıa-Labiano F, Abad A, De Diego L, Gayan P, Adanez J (2002) Calcination of calcium-based sorbents at pressure in a broad range of CO2 concentrations. Chem Eng Sci 57:2381–2393CrossRefGoogle Scholar
  31. García IL, Álvarez JL, Blanco D (2011) Performance model for parabolic trough solar thermal power plants with thermal storage: comparison to operating plant data. Sol Energy 85:2443–2460CrossRefGoogle Scholar
  32. Golovina E, Klimov A (1999) On the true kinetic constant of the heterogeneous C+CO2 gasification reaction. Combust Explosion Shock Waves 35:393–396CrossRefGoogle Scholar
  33. Götz S (2006) Gekoppelte CFD-DEM-simulation blasenbildender Wirbelschichten. ShakerGoogle Scholar
  34. Kaltschmitt M, Hartmann H, Hofbauer H (2009) Energie aus Biomasse: Grundlagen, Techniken und Verfahren. Springer, BerlinGoogle Scholar
  35. Ketterer JC (2014) The impact of wind power generation on the electricity price in Germany. Energy Econ 44:270–280CrossRefGoogle Scholar
  36. Klutz H-J, Maser C, Block D (2006) WTA-Feinkorntrocknung, Baustein für die Braunkohlekraftwerke der Zukunft: Entwicklung und Betriebsergebnisse der Versuchsanlage. VGB PowerTech 86:57–61Google Scholar
  37. Lee MS (1986) Mathematical model and control of a coal pulverizer. University of AustinGoogle Scholar
  38. Link JM (2006) Development and validation of a discrete particle model of a spout-fluid bed granulator. PrintPartners IpskampGoogle Scholar
  39. Magnussen BF, Hjertager BH (1977) On mathematical modeling of turbulent combustion with special emphasis on soot formation and combustion. In: Symposium (International) on combustion. Elsevier, Amsterdam, pp 719–729Google Scholar
  40. May J, Alobaid F, Ohlemüller P, Stroh A, Ströhle J, Epple B (2017a) Reactive two-fluid model for chemical-looping combustion—Part A: simulation of fuel reactor. Int J Greenhouse Gas Control. SubmittedGoogle Scholar
  41. May J, Alobaid F, Ohlemüller P, Stroh A, Ströhle J, Epple B (2017b) Reactive two-fluid model for chemical-looping combustion—Part B: simulation of air reactor. Int J Greenhouse Gas Control. SubmittedGoogle Scholar
  42. Mertens N, Alobaid F, Starkloff R, Epple B, Kim H-G (2015) Comparative investigation of drum-type and once-through heat recovery steam generator during start-up. Appl Energy 144:250–260CrossRefGoogle Scholar
  43. Mertens N, Alobaid F, Lanz T, Epple B, Kim H-G (2016a) Dynamic simulation of a triple-pressure combined-cycle plant: hot start-up and shutdown. Fuel 167:135–148CrossRefGoogle Scholar
  44. Mertens NJ, Alobaid F, Epple B, Kim H-G (2016b) Combined-cycle start-up procedures: dynamic simulation and measurement. In: ASME 2016 Power Conference collocated with the ASME 2016 10th International Conference on Energy Sustainability and the ASME 2016 14th International Conference on Fuel Cell Science, Engineering and Technology. American Society of Mechanical Engineers, pp V001T011A006–V001T011A006Google Scholar
  45. Nikolopoulos A, Stroh A, Zeneli M, Alobaid F, Nikolopoulos N, Ströhle J, Karellas S, Epple B, Grammelis P (2017) Numerical investigation and comparison of coarse grain CFD–DEM and TFM in the case of a 1 MWth fluidized bed carbonator simulation. Chem Eng Sci 163:189–205CrossRefGoogle Scholar
  46. Ohlemüller P, Alobaid F, Gunnarsson A, Ströhle J, Epple B (2015) Development of a process model for coal chemical looping combustion and validation against 100 kW th tests. Appl Energy 157:433–448CrossRefGoogle Scholar
  47. Ohlemüller P, Busch J-P, Reitz M, Ströhle J, Epple B (2016) Chemical-looping combustion of hard coal: autothermal operation of a 1 MWth pilot plant. J Energy Res Technol 138:042203CrossRefGoogle Scholar
  48. Ohlemüller P, Alobaid F, Abad A, Adanez J, Ströhle J, Epple B (2017) Development and validation of 1D process model with autothermal operation of a 1 MWth chemical looping pilot plant. Int J Greenhouse Gas Control. SubmittedGoogle Scholar
  49. Postler R (2012) Modellbildung und simulation instationärer Prozesse in einer Oxyfuel-Kraftwerksanlage. CuvillierGoogle Scholar
  50. Sharma R, May J, Alobaid F, Ohlemüller P, Ströhle J, Epple B (2017) Euler-Euler CFD simulation of the fuel reactor of a 1 MWth chemical-looping pilot plant: Influence of the drag models and specularity coefficient. Fuel 200:435–446CrossRefGoogle Scholar
  51. Sowinski A, Miller L, Mehrani P (2010) Investigation of electrostatic charge distribution in gas-solid fluidized beds. Chem Eng Sci 65:2771–2781CrossRefGoogle Scholar
  52. Spalding DB (1982) The “Shadow” method of particle-size calculation in two-phase combustion. In: Symposium (International) on combustion. Elsevier, Amsterdam, pp 941–951Google Scholar
  53. Spliethoff H (2010) Power generation from solid fuels. Springer, BerlinGoogle Scholar
  54. Starkloff R, Alobaid F, Karner K, Epple B, Schmitz M, Boehm F (2015) Development and validation of a dynamic simulation model for a large coal-fired power plant. Appl Therm Eng 91:496–506CrossRefGoogle Scholar
  55. Starkloff R, Postler R, Al-Maliki WAK, Alobaid F, Epple B (2016) Investigation into gas dynamics in an oxyfuel coal fired boiler during master fuel trip and blackout. J Process Control 41:67–75CrossRefGoogle Scholar
  56. Stroh A, Alobaid F, Busch J-P, Ströhle J, Epple B (2015) 3-D numerical simulation for co-firing of torrefied biomass in a pulverized-fired 1 MWth combustion chamber. Energy 85:105–116CrossRefGoogle Scholar
  57. Stroh A, Alobaid F, von Bohnstein M, Ströhle J, Epple B (2017) Numerical CFD simulation of 1 MWth circulating fluidised bed using the coarse grain discrete element method with homogenous drag models and particle size distribution. Fuel Process Technol, pp 1173–1189Google Scholar
  58. Tsuji Y, Tanaka T, Ishida T (1992) Lagrangian numerical simulation of plug flow of cohesionless particles in a horizontal pipe. Powder Technol 71:239–250CrossRefGoogle Scholar
  59. Tsuji Y, Kawaguchi T, Tanaka T (1993) Discrete particle simulation of two-dimensional fluidized bed. Powder Technol 77:79–87CrossRefGoogle Scholar
  60. Wolf C (2005) Erstellung eines Modells der Verbrennung von Abfall auf Rostsystemen unter besonderer Berücksichtigung der Vermischung. Universität Duisburg-Essen, Fakultät für IngenieurwissenschaftenGoogle Scholar
  61. Zhou J, Yu A, Horio M (2008) Finite element modeling of the transient heat conduction between colliding particles. Chem Eng J 139:510–516CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Forschungsgruppenleiter des Inst. für Energiesysteme und Energietechnik (EST)Technische Universität DarmstadtDarmstadtGermany

Personalised recommendations