Process Simulation

  • Falah AlobaidEmail author
Part of the Springer Tracts in Mechanical Engineering book series (STME)


Conventional thermal power plants are traditionally responsible for compensation of daily and seasonal load variations. The increased penetration of renewable energy sources in the generation of electrical power recently raises technical and economic challenges for the operation of these plants due to the uncertainty of supply and demand. Existing thermal power plants have to be retrofitted with optimised components and control circuits to improve their operation mode concerning the load change times as well as the rate of shutdown and start-up. In addition to the experimental works, mathematical models contribute to a better understanding of the process and can play an important role for increasing the power plant flexibility.


  1. Adánez J, Abad A, Mendiara T, Gayán P, de Diego LF, García-Labiano F (2018) Chemical looping combustion of solid fuels. Prog Energy Combust Sci 65:6–66CrossRefGoogle Scholar
  2. Alobaid F (2015a) An offset-method for Euler-Lagrange approach. Chem Eng Sci 138:173–193CrossRefGoogle Scholar
  3. Alobaid F (2015b) A particle–grid method for Euler-Lagrange approach. Powder Technol 286:342–360CrossRefGoogle Scholar
  4. Alobaid F, Karner K, Belz J, Epple B, Kim H-G (2014) Numerical and experimental study of a heat recovery steam generator during start-up procedure. Energy 64:1057–1070CrossRefGoogle Scholar
  5. Alobaid F, Mertens N, Starkloff R, Lanz T, Heinze C, Epple B (2017) Progress in dynamic simulation of thermal power plants. Prog Energy Combust Sci 59:79–162CrossRefGoogle Scholar
  6. Alobaid F, Pfeiffer S, Epple B, Seon C-Y, Kim H-G (2012) Fast start-up analyses for Benson heat recovery steam generator. Energy 46:295–309CrossRefGoogle Scholar
  7. Åström KJ, Hägglund T (1995) PID controllers: theory, design and tuning. Instrument Society of America, United States of AmericaGoogle Scholar
  8. Bequette BW (2003) Process control: modeling, design, and simulation. Prentice Hall ProfessionalGoogle Scholar
  9. Berenson P (1961) Film-boiling heat transfer from a horizontal surface. J Heat Transfer 83:351–356CrossRefGoogle Scholar
  10. Bergman TL, Incropera FP, Lavine AS (2011) Fundamentals of heat and mass transfer. WileyGoogle Scholar
  11. Berndt G (1984) Mathematisches Modell eines Naturumlauf-Dampferzeugers zur St@: orfallsimulation und dessen experimentelle@: Uberpr@: ufungGoogle Scholar
  12. Berry R, Peterson J, Zhang H, Martineau R, Zhao H, Zou L, Andrs D (2014) Relap-7 theory manual. Idaho National Laboratory, Tech. Rep. INL/EXT-14-31366Google Scholar
  13. Berry R, Zou L, Zhao H, Andrs D (2013) RELAP-7: demonstrating seven-equation, two-phase. Idaho National Laboratory (INL)Google Scholar
  14. Berry RA, Saurel R, LeMetayer O (2010) The discrete equation method (DEM) for fully compressible, two-phase flows in ducts of spatially varying cross-section. Nucl Eng Des 240:3797–3818CrossRefGoogle Scholar
  15. Bestion D (1990) The physical closure laws in the CATHARE code. Nucl Eng Des 124:229–245CrossRefGoogle Scholar
  16. Bhagwat SM, Ghajar AJ (2012) Similarities and differences in the flow patterns and void fraction in vertical upward and downward two phase flow. Exp Thermal Fluid Sci 39:213–227CrossRefGoogle Scholar
  17. Bhagwat SM, Ghajar AJ (2014) A flow pattern independent drift flux model based void fraction correlation for a wide range of gas–liquid two phase flow. Int J Multiph Flow 59:186–205CrossRefGoogle Scholar
  18. Blamey J, Anthony EJ, Wang J, Fennell PS (2010) The calcium looping cycle for large-scale CO2 capture. Prog Energy Combust Sci 36:260–279CrossRefGoogle Scholar
  19. Bouillon P-A, Hennes S, Mahieux C (2009) ECO2: post-combustion or oxyfuel—a comparison between coal power plants with integrated CO2 capture. Energy Procedia 1:4015–4022CrossRefGoogle Scholar
  20. Cooke DH (1984) On prediction of off-design multistage turbine pressures by Stodola’s ellipse. In: 1984 joint power generation conference: GT papers. American Society of Mechanical Engineers, pp V001T004A004–V001T004A004Google Scholar
  21. Diao Y-F, Zheng X-Y, He B-S, Chen C-H, Xu X-C (2004) Experimental study on capturing CO2 greenhouse gas by ammonia scrubbing. Energy Convers Manag 45:2283–2296CrossRefGoogle Scholar
  22. Epple B, Leithner R, Linzer W, Walter H (2012) Simulation von Kraftwerken und Feuerungen. Springer-VerlagGoogle Scholar
  23. Fan GQ, Rees NW (1994) Modelling of vertical spindle mills in coal fired power plants, EEC 94: electrical engineering congress 1994; Preprints; Enabling technologies, developing industry; Congress and exhibition. Institution of Engineers, Australia, p 235Google Scholar
  24. Geldart D (1973) Types of gas fluidization. Powder Technol 7:285–292CrossRefGoogle Scholar
  25. Groeneveld D, Snoek C (1986) A comprehensive examination of heat transfer correlations suitable for reactor safety analysis. Multiphase Science and Technology 2Google Scholar
  26. Gryczka O, Heinrich S, Deen N, van Sint Annaland M, Kuipers J, Jacob M, Mörl L (2009) Characterization and CFD-modeling of the hydrodynamics of a prismatic spouted bed apparatus. Chem Eng Sci 64:3352–3375CrossRefGoogle Scholar
  27. Hänninen M (2009) Phenomenological extensions to APROS six-equation model. Non-condensable gas, supercriticalGoogle Scholar
  28. Hänninen M, Ahtinen E (2009) Simulation of non-condensable gas flow in two-fluid model of APROS—description of the model, validation and application. Ann Nucl Energy 36:1588–1596CrossRefGoogle Scholar
  29. Karimipour S, Pugsley T (2012) Application of the particle in cell approach for the simulation of bubbling fluidized beds of Geldart A particles. Powder Technol 220:63–69CrossRefGoogle Scholar
  30. Kuipers J, Prins W, Van Swaaij W (1991) Theoretical and experimental bubble formation at a single orifice in a two-dimensional gas-fluidized bed. Chem Eng Sci 46:2881–2894CrossRefGoogle Scholar
  31. Kunii D, Levenspiel O (1991) Fluidization engineering. Butterworth-Heinemann BostonGoogle Scholar
  32. Lee K, Ryley D (1968) The evaporation of water droplets in superheated steam. J Heat Transfer 90:445–451CrossRefGoogle Scholar
  33. Li K, Leigh W, Feron P, Yu H, Tade M (2016) Systematic study of aqueous monoethanolamine (MEA)-based CO2 capture process: techno-economic assessment of the MEA process and its improvements. Appl Energy 165:648–659CrossRefGoogle Scholar
  34. Luo Y, Liu H, Jia L, Cai W (2011) Modeling and simulation of ball mill coal-pulverizing system. In: Industrial electronics and applications (ICIEA), 2011 6th IEEE conference on. IEEE, pp 1348–1353Google Scholar
  35. Ohlemüller P, Alobaid F, Gunnarsson A, Ströhle J, Epple B (2015) Development of a process model for coal chemical looping combustion and validation against 100 kW th tests. Appl Energy 157:433–448CrossRefGoogle Scholar
  36. Palmer CA, Erbes MR (1994) Simulation methods used to analyze the performance of the GE PG6541B gas turbine utilizing low heating value fuels. American Society of Mechanical Engineers, New York, NY (United States)Google Scholar
  37. Ransom VH, Hicks DL (1984) Hyperbolic two-pressure models for two-phase flow. J Comput Phys 53:124–151MathSciNetCrossRefzbMATHGoogle Scholar
  38. Shah M (1979) A general correlation for heat transfer during film condensation inside pipes. Int J Heat Mass Transf 22:547–556CrossRefGoogle Scholar
  39. Song S, Xie L, Cai W-J (2002) Auto-tuning of cascade control systems. In: Proceedings of the 4th World Congress on intelligent control and automation, 2002. IEEE, pp 3339–3343Google Scholar
  40. Stroh A, Alobaid F, Hasenzahl MT, Hilz J, Ströhle J, Epple B (2016) Comparison of three different CFD methods for dense fluidized beds and validation by a cold flow experiment. ParticuologyGoogle Scholar
  41. Ströhle J, Junk M, Kremer J, Galloy A, Epple B (2014) Carbonate looping experiments in a 1 MW th pilot plant and model validation. Fuel 127:13–22CrossRefGoogle Scholar
  42. Ströhle J, Orth M, Epple B (2015) Chemical looping combustion of hard coal in a 1 MW th pilot plant using ilmenite as oxygen carrier. Appl Energy 157:288–294CrossRefGoogle Scholar
  43. Stuhmiller J (1977) The influence of interfacial pressure forces on the character of two-phase flow model equations. Int J Multiph Flow 3:551–560CrossRefzbMATHGoogle Scholar
  44. Tan KK, Wang Q-G, Hang CC (2012) Advances in PID control. Springer Science & Business MediaGoogle Scholar
  45. Wallis GB (1969) One-dimensional two-phase flow. McGraw-Hill, New YorkGoogle Scholar
  46. Walter H (2001) Modellbildung und numerische Simulation von Naturumlaufdampferzeugern. VDI-VerlagGoogle Scholar
  47. Walter H, Epple B (2016) Numerical simulation of power plants and firing systems. SpringerGoogle Scholar
  48. Walter H, Hofmann R (2011) How can the heat transfer correlations for finned-tubes influence the numerical simulation of the dynamic behavior of a heat recovery steam generator? Appl Therm Eng 31:405–417CrossRefGoogle Scholar
  49. Wang J, Leithner R (1995) Konzepte und Wirkungsgrade kohlegefeuerter Kombianlagen. Brennstoff-Wärme-Kraft 47:11–17Google Scholar
  50. Wu C, Berrouk A, Nandakumar K (2009) Three-dimensional discrete particle model for gas–solid fluidized beds on unstructured mesh. Chem Eng J 152:514–529CrossRefGoogle Scholar
  51. Zhou G, Si J, Taft CW (2000) Modeling and simulation of CE deep bowl pulverizer. IEEE Trans Energy Convers 15:312–322Google Scholar
  52. Zuber N, Findlay J (1965) Average volumetric concentration in two-phase flow systems. J Heat Transfer 87:453–468CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Forschungsgruppenleiter des Inst. für Energiesysteme und Energietechnik (EST)Technische Universität DarmstadtDarmstadtGermany

Personalised recommendations