Abstract
There is a growing interest for the aromatic and biological properties of essential oils, as alternatives to synthetic chemicals. Nonetheless, essential oils and their components are poorly soluble in water, and are highly sensitive to degradation and evaporation. Encapsulation in cyclodextrins can reduce these drawbacks and improve the properties of essential oils. Cyclodextrins are non-toxic cyclic oligosaccharides obtained by enzymatic degradation of starch. Cyclodextrins inclusion complexes find applications in the food, pharmaceutical and cosmetic industries.
This chapter reviews encapsulation of essential oils in cyclodextrins. The strength of binding between cyclodextrins and essential oils components covers a wide range of formation constants with values ranging from 13 to 166,338 M−1. The encapsulation in cyclodextrins increases the aqueous solubility of essential oils up to 16-fold and reduces oil photodegradation rates up to 44-fold, while ensuring gradual release of oils. This chapter also discusses the effect of encapsulation on biological activities such as antimicrobial and antioxidant properties of essential oils. Biological effects depend on the nature and concentrations of essential oils and cyclodextrin, the tested microorganism, and other factors. Emerging cyclodextrin-based approaches for textiles and nanofibers are also discussed.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
FDA: Code Fed. Regul. (CFR). Title 21 Food Drugs. Chapter I – Food Drug Adm. Dep. Heal. Hum. Serv. Subchapter B – Food Hum. Consum. (Continued), Part 182–Subst. Gen. Recognized as Safe (GRAS). 2016.
- 2.
Essential Oil Market Analysis By Product (Orange, Corn Mint, Eucalyptus, Citronella, Peppermint, Lemon, Clove Leaf, Lime, Spearmint), By Application (Medical, Food & Beverage, Spa & Relaxation, Cleaning & Home) And Segment Forecasts To 2024.
- 3.
Vraz Kresevic S, Voncina B, Gersak J. Insect resistant and eco-friendly textile materials. In: Dragcevic Zvonko (ed.): 4th International Textile, Clothing & Design Conference: Magic world of textiles : book of proceedings, ITC&DC, 05-08 October, 2008, Dubrovnik, Croatia. Zagreb: Faculty of Textile Technology, University of Zagreb; 2008.
Abbreviations
- CD:
-
Cyclodextrin
- CRYSMEB:
-
Low methylated-β-cyclodextrin
- EO:
-
Essential oil
- HP-β-CD:
-
Hydroxypropyl-β-cyclodextrin
- HPLC:
-
High performance liquid chromatography
- IC50:
-
Half maximal inhibitory concentration
- ITC:
-
Isothermal titration calorimetry
- LD50:
-
Median lethal dose
- MBC:
-
Minimal bactericidal concentration
- MHE:
-
Multiple headspace extraction
- MIC:
-
Minimum inhibitory concentration
- NMR:
-
Nuclear magnetic resonance
- RAMEB:
-
Randomly methylated-β-cyclodextrin
- SH-GC:
-
Static headspace-gas chromatography
- TG:
-
Thermogravimetry
References
Amidon GL, Lennernäs H, Shah VP, Crison JR (1995) A theoretical basis for a biopharmaceutic drug classification: the correlation of in vitro drug product dissolution and in vivo bioavailability. Pharm Res 12:413–420. https://doi.org/10.1023/A:1016212804288
Andrade TA, Freitas TS, Araújo FO, Menezes PP, Anne G, Dória A, Rabelo AS, Quintans-Júnior LJ, Santos MRV, Bezerra DP, Serafini MR, Menezes IRS, Nunes PS, Araújo AAS, Costa MS, Campina FF, Santos ATL, Silva ARP, Coutinho HDM (2017) Physico-chemical characterization and antibacterial activity of inclusion complexes of Hyptis martiusii Benth essential oil in β-cyclodextrin. Biomed Pharmacother 89:201–207. https://doi.org/10.1016/j.biopha.2017.01.158
Andreu-Sevilla AJ, López-Nicolás JM, Carbonell-Barrachina ÁA, García-Carmona F (2011) Comparative effect of thea of α-, β-, or γ-cyclodextrin on main sensory and physico-chemical parameters. J Food Sci 76(5):347–353. https://doi.org/10.1111/j.1750-3841.2011.02190.x
Anishetty R, Puri S, Garg V, Yadav AK, Mittal A (2015) Approaches for overcoming poor oral bioavailability of drugs: nanoarchitectures in focus. Int J Pharma Bio Sci 6(4):306–334
Ansari MJ, Kohli K, Ali J, Anwer MK, Jamil S, Ahmed MM (2014) Physicochemical characterizations and dissolution behavior of curcumin and α-cyclodextrin molecular inclusion complexes. Der Pharm Lett 6(6):1–7
Arana-Sánchez A, Estarrón-Espinosa M, Obledo-Vázquez EN, Padilla-Camberos E, Silva-Vázquez R, Lugo-Cervantes E (2010) Antimicrobial and antioxidant activities of Mexican oregano essential oils (Lippia graveolens H. B. K.) with different composition when microencapsulated in β-cyclodextrin. Lett Appl Microbiol 50(6):585–590. https://doi.org/10.1111/j.1472-765X.2010.02837.x
Arfat YA, Benjakul S, Vongkamjan K, Sumpavapol P, Yarnpakdee S (2015) Shelf-life extension of refrigerated sea bass slices wrapped with fish protein isolate/fish skin gelatin-ZnO nanocomposite film incorporated with basil leaf essential oil. J Food Sci Technol 52:6182–6193. https://doi.org/10.1007/s13197-014-1706-y
Astray G, Gonzalez-Barreiro C, Mejuto JC, Rial-Otero R, Simal-Gándara J (2009) A review on the use of cyclodextrins in foods. Food Hydrocoll 23(7):1631–1640. https://doi.org/10.1016/j.foodhyd.2009.01.001
Astray G, Mejuto JC, Morales J, Rial-Otero R, Simal-Gandara J (2010) Factors controlling flavors binding constants to cyclodextrins and their applications in foods. Food Res Int 43(4):1212–1218. https://doi.org/10.1016/j.foodres.2010.02.017
Ayala-Zavala JF, Soto-Valdez H, Gonzalez-Leon A, Alvarez-Parrilla E, Martin-Belloso O, Gonzalez-Aguilar GA (2008) Microencapsulation of cinnamon leaf (Cinnamomum zeylanicum) and garlic (Allium sativum) oils in β-cyclodextrin. J Incl Phenom Macrocycl Chem 60:359–368. https://doi.org/10.1007/s10847-007-9385-1
Aytac Z, Yildiz ZI, Kayaci-Senirmak F, San Keskin NO, Tekinayde T, Uyar T (2016a) Electrospinning of polymer-free cyclodextrin/geraniol-inclusion complex nanofibers: enhanced shelf-life of geraniol with antibacterial and antioxidant properties. RSC Adv 6(52):46089–46099. https://doi.org/10.1039/c6ra07088d
Aytac Z, Yildiz ZI, Kayaci-Senirma F, San KNO, Kusku SI, Durgun E, Tekinay T, Uyat T (2016b) Fast-dissolving, prolonged release, and antibacterial cyclodextrin/limonene-inclusion complex nanofibrous webs via polymer-free electrospinning. J Agric Food Chem 64(39):7325–7334. https://doi.org/10.1021/acs.jafc.6b02632
Aytac Z, Ipek S, Durgun E, Tekinay T, Uyar T (2017) Antibacterial electrospun zein nanofibrous web encapsulating thymol/cyclodextrin-inclusion complex for food packaging. Food Chem 233:117–124. https://doi.org/10.1016/j.foodchem.2017.04.095
Bai Y, Yu B, Xu X, Jin Z, Tian Y, Lu L (2010) Comparison of encapsulation properties of major garlic oil components by hydroxypropyl β-cyclodextrin. Eur Food Res Technol 231(4):519–524. https://doi.org/10.1007/s00217-010-1307-6
Bajpai VK, Baek K, Chul S (2012) Control of salmonella in foods by using essential oils : a review. Food Res Int 45(2):722–734. https://doi.org/10.1016/j.foodres.2011.04.052
Bakkali F, Averbeck S, Averbeck D, Idaomar M (2008) Biological effects of essential oils – a review. Food Chem Toxicol 46:446–475. https://doi.org/10.1016/j.fct.2007.09.106
Baránková E, Dohnal V (2016) Effect of additives on volatility of aroma compounds from dilute aqueous solutions. Fluid Phase Equilib 407:217–223. https://doi.org/10.1016/j.fluid.2015.05.038
Bertaut E, Landy D (2014) Improving ITC studies of cyclodextrin inclusion compounds by global analysis of conventional and non-conventional experiments. Beilstein J Org Chem 10:2630–2641. https://doi.org/10.3762/bjoc.10.275
Berthelot K, Estevez Y, Deffieux A, Peruch F (2012) Isopentenyl diphosphate isomerase: a checkpoint to isoprenoid biosynthesis. Biochimie 94(8):1621–1634. https://doi.org/10.1016/j.biochi.2012.03.021
Bethanis K, Tzamalis P, Tsorteki F, Kokkinou A, Christoforides E, Mentzafos D (2013) Structural study of the inclusion compounds of thymol, carvacrol and eugenol in β-cyclodextrin by X-ray crystallography. J Incl Phenom Macro 77(1–4):163–173. https://doi.org/10.1007/s10847-012-0230-9
Bilia AR, Guccione C, Isacchi B, Righeschi C, Firenzuoli F, Bergonzi MC (2014) Essential oils loaded in nanosystems : a developing strategy for a successful therapeutic approach. Evid Based Complement Alternat Med. Article ID 651593. https://doi.org/10.1155/2014/651593
Bourgeois W, Burgess JE, Stuetz RM (2001) On-line monitoring of wastewater quality: a review. J Chem Technol Biotechnol 76(4):337–348. https://doi.org/10.1002/jctb.393
Brasil IM, Gomes C, Puerta-gomez A, Castell-perez ME, Moreira RG (2012) Polysaccharide-based multilayered antimicrobial edible coating enhances quality of fresh-cut papaya. Food Sci Technol 47(1):39–45. https://doi.org/10.1016/j.lwt.2012.01.005
Brewster ME, Loftsson T (2007) Cyclodextrins as pharmaceutical solubilizers. Adv Drug Deliv Rev 59(7):645–666. https://doi.org/10.1016/j.addr.2007.05.012
Budryn G, Zaczyńska D, Rachwał-Rosiak D, Oracz J (2015) Changes in properties of food proteins after interaction with free and β encapsulated hydroxycinnamic acids. Eur Food Res Technol 240:1157–1166. https://doi.org/10.4315/0362-028X-68.5.919
Burt S (2004) Essential oils: their antibacterial properties and potential applications in foods — a review. Int J Food Microbiol 94:223–253. https://doi.org/10.1016/j.ijfoodmicro.2004.03.022
Burt SA, Vlielander R, Haagsman HP, Veldhuizen EJA (2005) Increase in activity of essential oil components carvacrol and thymol against Escherichia coli O157:H7 by addition of food stabilizers. J Food Prot 68(5):919–926. https://doi.org/10.4315/0362-028X-68.5.919
Carrier RL, Miller LA, Ahmed I (2007) The utility of cyclodextrins for enhancing oral bioavailability. J Control Release 123:78–99. https://doi.org/10.1016/j.jconrel.2007.07.018
Carvalho IT, Estevinho BN, Santos L (2016) Application of microencapsulated essential oils in cosmetic and personal healthcare products–a review. Int J Cosmet Sci 38:109–119. https://doi.org/10.1111/ics.12232
Celebioglu A, Kayaci-Senirmak F, İpek S, Durgunab E, Uyar T (2016) Polymer-free nanofibers from vanillin/cyclodextrin inclusion complexes: high thermal stability, enhanced solubility and antioxidant property. Food Funct 7:3141–3153. https://doi.org/10.1039/C6FO00569A
Cetin Babaoglu H, Bayrak A, Ozdemir N, Ozgun N (2017) Encapsulation of clove essential oil in hydroxypropyl beta-cyclodextrin for characterization, controlled release, and antioxidant activity. J Food Process Preserv. In press. https://doi.org/10.1111/jfpp.13202
Chaves AV, He ML, Yang WZ, Hristov AN, McAllister TA, Benchaar C (2008) Effects of essential oils on proteolytic, deaminative and methanogenic activities of mixed ruminal bacteria. Can J Anim Sci 88:117–122. https://doi.org/10.4141/CJAS07061
Chen H, Ji H, Zhou X, Wang L (2010) Green synthesis of natural benzaldehyde from cinnamon oil catalyzed by hydroxypropyl-β-cyclodextrin. Tetrahedron 66(52):9888–9893. https://doi.org/10.1016/j.tet.2010.10.063
Ciobanu A, Mallard I, Landy D, Brabie G, Nistor D, Fourmentin S (2012) Inclusion interactions of cyclodextrins and crosslinked cyclodextrin polymers with linalool and camphor in Lavandula angustifolia essential oil. Carbohydr Polym 87(3):1963–1970. https://doi.org/10.1016/j.carbpol.2011.10.005
Ciobanu A, Landy D, Fourmentin S (2013) Complexation efficiency of cyclodextrins for volatile flavor compounds. Food Res Int 53(1):110–114. https://doi.org/10.1016/j.foodres.2013.03.048
Costa P, Medronho B, Gonc S, Romano A (2015) Cyclodextrins enhance the antioxidant activity of essential oils from three Lamiaceae species. Ind Crop Prod 70:341–346. https://doi.org/10.1016/j.indcrop.2015.03.065
Costa G, Gidaro MC, Vulla D, Supuran CT, Alcaro S (2016) Active components of essential oils as anti-obesity potential drugs investigated by in silico techniques. J Agric Food Chem 64(26):5295–5300. https://doi.org/10.1021/acs.jafc.6b02004
Crini G (2014) Review: a history of cyclodextrins. Chem Rev 114(21):10940–10975. https://doi.org/10.1021/cr500081p
da Silveira E, Sá RDC, Andrade LN, De Oliveira RDRB, De Sousa DP (2014) A review on anti-inflammatory activity of phenylpropanoids found in essential oils. Molecules 19(2):1459–1480. https://doi.org/10.3390/molecules19021459
De Vos P, Faas MM, Spasojevic M, Sikkema J (2010) Encapsulation for preservation of functionality and targeted delivery of bioactive food components. Int Dairy J 20(4):292–302. https://doi.org/10.1016/j.idairyj.2009.11.008
Decock G, Fourmentin S, Surpateanu GG, Landy D, Decock P, Surpateanu G (2006) Experimental and theoretical study on the inclusion compounds of aroma components with β-cyclodextrins. Supramol Chem 18(6):477–482. https://doi.org/10.1080/10610270600665749
Decock G, Landy D, Surpateanu G, Fourmentin S (2008) Study of the retention of aroma components by cyclodextrins by static headspace gas chromatography. J Incl Phenom Macrocycl Chem 62(3–4):297–302. https://doi.org/10.1007/s10847-008-9471-z
Del Valle EMM (2004) Cyclodextrins and their uses: a review. Process Biochem 39(9):1033–1046. https://doi.org/10.1016/S0032-9592(03)00258-9
Demian BA (2000) Correlation of the solubility of several aromatics and terpenes in aqueous hydroxypropyl-β-cyclodextrin with steric and hydrophobicity parameters. Carbohydr Res 328:635–639. https://doi.org/10.1016/S0008-6215(00)00139-7
Dima C, Dima S (2015) Essential oils in foods: extraction, stabilization, and toxicity. Curr Opin Food 5:29–35. https://doi.org/10.1016/j.cofs.2015.07.003
Dima C, Cotarlet M, Tiberius B, Bahrim G, Alexe P, Dima S (2014) Encapsulation of coriander essential oil in beta-cyclodextrin: antioxidant and antimicrobial properties evaluation. Rom Biotechnol Lett 19(2):9128–9141. https://doi.org/10.1016/j.foodhyd.2016.11.014
Donze C, Coleman W (1993) β-CD inclusion complexes: relative selectivity of terpene and aromatic guest molecules studied by competitive inclusion experiments. J Incl Phenom Macrocycl Chem 62(3–4):297–302. https://doi.org/10.1007/BF00708758
Dorman HJD, Deans SG (2000) Antimicrobial agents from plants: antibacterial activity of plant volatile oils. J Appl Microbiol 88:308–316. https://doi.org/10.1046/j.1365-2672.2000.00969.x
Dwivedy AK, Kumar M, Upadhyay N, Prakash B, Dubey NK (2016) Plant essential oils against food borne fungi and mycotoxins. Curr Opin Food Sci 11:16–21. https://doi.org/10.1016/j.cofs.2016.08.010
Eby GAIII (1992) Taste-masked zinc acetate com- positions for oral absorption. US patent 5,095,035. March 10:1992
Eftink MR, Andy ML, Bystrom K, Perlmutter HD, Kristol DS (1989) Cyclodextrin inclusion complexes: studies of the variation in the size of slicyclic guests. J Am Chem Soc 111(17):6765–6772. https://doi.org/10.1021/ja00199a041
Elbary AA, El Nabarawi MA, Ali AMA, Hassan AH (2013) Formulation and evaluation of taste-masked orally disintegrating tablets of nicergoline based on β-cyclodextrin inclusion complexation. Int. J Drug Deliv 5(1):110–120
Fenyvesi E, Gruiz K, Verstichel S, BDe W, Leitgib L, Csabai K, Szaniszlo N (2005) Biodegradation of cyclodextrins in soil. Chemosphere 60:1001–1008. https://doi.org/10.1016/j.chemosphere.2005.01.026
Fenyvesi E, Szemán J, Csabai K, Malanga M, Szente L (2014) Methyl-beta-cyclodextrins: the role of number and types of substituents in solubilizing power. J Pharm Sci 103(5):1443–1452. https://doi.org/10.1002/jps.23917
Ferrazza R, Rossi B, Guella G (2014) DOSY-NMR and Raman investigations on the self-aggregation and cyclodextrin complexation of vanillin. J Phys Chem B 118(25):7147–7155
Fisher K, Phillips C (2009) The mechanism of action of a citrus oil blend against Enterococcus faecium and Enterococcus faecalis. J Appl Microbiol 106:1343–1349. https://doi.org/10.1111/j.1365-2672.2008.04102.x
Fourmentin S, Ciobanu A, Landy D, Wenz G (2013) Space filling of β-cyclodextrin and β-cyclodextrin derivatives by volatile hydrophobic guests. Beilstein J Org Chem 9:1185–1191. https://doi.org/10.3762/bjoc.9.133
Galvão JG, Silva VF, Ferreira SG, França FRM, Santos DA, Freitas LS, Alves PB, Araújo AAS, Cavalcanti SCH, Nunes RS (2015) β-cyclodextrin inclusion complexes containing Citrus sinensis (L.) Osbeck essential oil: an alternative to control Aedes aegypti larvae. Thermochim Acta 608:14–19. https://doi.org/10.1016/j.tca.2015.04.001
Gould S, Scott RC (2005) 2-Hydroxypropyl-β-cyclodextrin (HP- β -CD): a toxicology review. Food Chem Toxicol 43(10):1451–1459. https://doi.org/10.1016/j.fct.2005.03.007
Gray J, Caparros-Ruiz D, Grotewold E (2012) Grass phenylpropanoids: regulate before using! Plant Sci 184:112–120. https://doi.org/10.1016/j.plantsci.2011.12.008
Griffin S, Wyllie SG, Markham J (1999) Determination of octanol – water partition coefficient for terpenoids using reversed-phase high-performance liquid chromatography. J Chromatogr A 864:221–228. https://doi.org/10.1016/S0021-9673(99)01009-2
Hǎdǎrugǎ NG, Hǎdǎrugǎ DI, Isengard HD (2012) Water content of natural cyclodextrins and their essential oil complexes : a comparative study between Karl Fischer titration and thermal methods. Food Chem 132:1741–1748. https://doi.org/10.1016/j.foodchem.2011.11.003
Hǎdǎrugǎ DI, Ünlüsayin M, Gruia AT, Bir C, Rusu G, Nicoleta GH (2016) Thermal and oxidative stability of Atlantic salmon oil (Salmo salar L.) and complexation with β –cyclodextrin. Beilstein J Org Chem 12:179–191. https://doi.org/10.3762/bjoc.12.20
Hernandez-Sanchez P, Lopez-Miranda S, Lucas-Abellan C, Nunez-Delicado E (2012) Complexation of eugenol (EG), as main component of clove oil and as pure compound, with β- and HP-β-CDs. Food Nutr Sci 3:716–723. https://doi.org/10.4236/fns.2012.36097
Hernández-Sánchez P, López-Miranda S, Guardiola L, Serrano-Martínez A, Gabaldón JA, Nuñez-Delicado E (2017) Optimization of a method for preparing solid complexes of essential clove oil with β-cyclodextrins. J Sci Food Agric 97(2):420–426. https://doi.org/10.1002/jsfa.7781
Higuchi T, Connors KA (1965) Phase-solubility techniques. Adv Anal Chem Instrum 4:117–212
Hill LE, Gomes C, Taylor TM (2013) Characterization of beta-cyclodextrin inclusion complexes containing essential oils (trans -cinnamaldehyde , eugenol , cinnamon bark , and clove bud extracts) for antimicrobial delivery applications. Food Sci Technol 51(1):86–93. https://doi.org/10.1016/j.lwt.2012.11.011
Ho BT, Joyce DC, Bhandari BR (2011) Release kinetics of ethylene gas from ethylene–α-cyclodextrin inclusion complexes. Food Chem 129(2):259–266. https://doi.org/10.1016/j.foodchem.2011.04.035
Hou L, Wang J, Zhang D (2013) Optimization of debittering of soybean antioxidant hydrolysates with β-cyclodextrins using response surface methodology. J Food Sci Technol 50(3):521–527. https://doi.org/10.1007/s13197-011-0358-4
Hougeir FG, Kircik L (2012) A review of delivery systems in cosmetics. Dermatol Ther 25(3):234–237. https://doi.org/10.1111/j.1529-8019.2012.01501.x
Huang Y, Zhao J, Zhou L, Wang J, Gong Y, Chen X, Guo Z, Wang Q, Jiang W (2010) Antifungal activity of the essential oil of Illicium verum fruit and its main component trans-anethole. Molecules 15(11):7558–7569. https://doi.org/10.3390/molecules15117558
Hyldgaard M, Mygind T, Meyer RL, Debabov D (2012) Essential oils in food preservation: mode of action, synergies, and interactions with food matrix components. Front Microbiol 3:1–24. https://doi.org/10.3389/fmicb.2012.00012
Jambhekar SS, Breen P (2016) Cyclodextrins in pharmaceutical formulations II : solubilization, binding constant, and complexation efficiency. Drug Discov Today 21(2):363–368. https://doi.org/10.1016/j.drudis.2015.11.016
Jayasena DD, Jo C (2014) Potential application of essential oils as natural antioxidants in meat and meat products: a review. Food Rev Int 30(1):71–90. https://doi.org/10.1080/87559129.2013.853776
Jiang S, Li JN, Jiang ZT (2010) Inclusion reactions of β-cyclodextrin and its derivatives with cinnamaldehyde in Cinnamomum loureirii essential oil. Eur Food Res Technol 230(4):543–550. https://doi.org/10.1007/s00217-009-1192-z
Kamimura JA, Santos EH, Hill LE, Gomes CL (2014) Antimicrobial and antioxidant activities of carvacrol microencapsulated in hydroxypropyl-beta-cyclodextrin. Food Sci Technol 57(2):701–709. https://doi.org/10.1016/j.lwt.2014.02.014
Kant A, Linforth RST, Hort J, Taylor AJ (2004) Effect of β-cyclodextrin on aroma release and flavor perception. J Agric Food Chem 52(7):2028–2035. https://doi.org/10.1021/jf0307088
Kapetanakou AE, Skandamis PN (2016) Applications of active packaging for increasing microbial stability in foods: natural volatile antimicrobial compounds. Curr Opin Food Sci 12:1–12. https://doi.org/10.1016/j.cofs.2016.06.001
Karapinar M, Aktuǧ SE (1987) Inhibition of foodborne pathogens by thymol, eugenol, menthol and anethole. Int J Food Microbiol 4(2):161–166. https://doi.org/10.1016/0168-1605(87)90023-7
Karathanos VT, Mourtzinos I, Yannakopoulou K, Andrikopoulos NK (2007) Study of the solubility, antioxidant activity and structure of inclusion complex of vanillin with beta-cyclodextrin. Food Chem 101(2):652–658. https://doi.org/10.1016/j.foodchem.2006.01.053
Kfoury M, Landy D, Auezova L, Greige-Gerges H, Fourmentin S (2014a) Effect of cyclodextrin complexation on phenylpropanoids’ solubility and antioxidant activity. Beilstein J Org Chem 10:2322–2331. https://doi.org/10.3762/bjoc.10.241
Kfoury M, Auezova L, Greige-Gerges H, Ruellan S, Fourmentin S (2014b) Cyclodextrin, an efficient tool for trans-anethole encapsulation: chromatographic, spectroscopic, thermal and structural studies. Food Chem 164:454–461. https://doi.org/10.1016/j.foodchem.2014.05.052
Kfoury M, Auezova L, Fourmentin S, Greige-Gerges H (2014c) Investigation of monoterpenes complexation with hydroxypropyl-beta-cyclodextrin. J Incl Phenom Macrocycl Chem 80:51–60. https://doi.org/10.1007/s10847-014-0385-7
Kfoury M, Balan R, Landy D, Nistor D, Fourmentin S (2015a) Investigation of the complexation of essential oil components with cyclodextrins. Supramol Chem 27(9):1–10. https://doi.org/10.1080/10610278.2015.1051977
Kfoury M, Auezova L, Ruellan S, Greige-Gerges H, Fourmentin S (2015b) Complexation of estragole as pure compound and as main component of basil and tarragon essential oils with cyclodextrins. Carbohydr Polym 118:156–164. https://doi.org/10.1016/j.carbpol.2014.10.073
Kfoury M, Auezova L, Greige-Gerges H, Fourmentin S (2015c) Promising applications of cyclodextrins in food: improvement of essential oils retention, controlled release and antiradical activity. Carbohydr Polym 131:264–272. https://doi.org/10.1016/j.carbpol.2015.06.014
Kfoury M, Lounès-Hadj Sahraoui A, Bourdon N, Laruelle F, Fontaine J, Auezova L, Greige-Gerges H, Fourmentin S (2016a) Solubility, photostability and antifungal activity of phenylpropanoids encapsulated in cyclodextrins. Food Chem 196:518–525. https://doi.org/10.1016/j.foodchem.2015.09.078
Kfoury M, Borgie M, Verdin A, Ledoux F, Courcot D, Auezova L, Fourmentin S (2016b) Essential oil components decrease pulmonary and hepatic cells inflammation induced by air pollution particulate matter. Environ Chem Lett 14:345–351. https://doi.org/10.1007/s10311-016-0572-4
Kfoury M, Hadaruga NG, Hadaruga DI, Fourmentin S (2016c) Cyclodextrins as encapsulation material for flavors and aroma. A volume in nanotechnology in the agri-food industry.. ISBN: 978-0-12-804307-3.
Kfoury M, Landy D, Ruellan S, Auezova L, Greige-Gerges H, Fourmentin S (2016d) Determination of formation constants and structural characterization of cyclodextrin inclusion complexes with two phenolic isomers: carvacrol and thymol. Beilstein J Org Chem 12(12):29–42. https://doi.org/10.3762/bjoc.12.5
Kfoury M, Landy D, Ruellan S, Auezova L, Greige-gerges H, Fourmentin S (2016e) Nootkatone encapsulation by cyclodextrins : effect on water solubility and photostability. Food Chem 236:41–48. https://doi.org/10.1016/j.foodchem.2016.12.086
Kfoury M, Auezova L, Greige-Gerges H, Larsen KL, Fourmentin S (2016f) Release studies of trans-anethole from β-cyclodextrin solid inclusion complexes by multiple headspace extraction. Carbohydr Polym 151:1245–1250. https://doi.org/10.1016/j.carbpol.2016.06.079
Kfoury M, Auezova L, Greige-Gerges H, Fourmentin S (2016g) Development of a Total organic carbon method for the quantitative determination of solubility enhancement by cyclodextrins : application to essential oils. Anal Chim Acta 918:21–25. https://doi.org/10.1016/j.aca.2016.03.013
Kfoury M, Pipkin JD, Antle V, Fourmentin S (2017) Captisol®: an efficient carrier and solubilizing agent for essential oils and their components. Flavour Fragr J 32(5):340–346. https://doi.org/10.1002/ffj.3395
Kolb B, Ettre LS (2006) Static headspace-gas chromatography theory and practice, 2nd edn. Wiley, Hoboken
Kurkov SV, Loftsson T (2013) Cyclodextrins. Int J Pharm 453(1):167–180. https://doi.org/10.1016/j.ijpharm.2012.06.055
Landy D, Fourmentin S, Salome M, Surpateanu G (2000) Analytical improvement in measuring formation constants of inclusion complexes between β-cyclodextrin and phenolic compounds. J Incl Phenom 38(1–4):187–198. https://doi.org/10.1023/A:1008156110999
Landy D, Tetart F, Truant E, Blach F, Fourmentin S, Surpateanu G (2007) Development of a competitive continuous variation plot for the determination of inclusion compounds stoichiometry. J Incl Phenom Macrocycl Chem 57:409–413. https://doi.org/10.1007/s10847-006-9226-7
Lee JH, Lee J, Song KB (2015) Development of a chicken feet protein film containing essential oils. Food Hydrocoll 46:208–215. https://doi.org/10.1016/j.foodhyd.2014.12.020
Li W, Du L, Li M (2011) Alkaloids and flavonoids as α-adrenergic receptor antagonists. Curr Med Chem 18:4923–4932. https://doi.org/10.2174/092986711797535209
Li W, Liu X, Yang Q, Zhang N, Du Y, Zhu H (2015) Preparation and characterization of inclusion complex of benzyl isothiocyanate extracted from papaya seed with β-cyclodextrin. Food Chem 184:99–104. https://doi.org/10.1016/j.foodchem.2015.03.091
Liang H, Yuan Q, Vriesekoop F, Lv F (2012) Effects of cyclodextrins on the antimicrobial activity of plant-derived essential oil compounds. Food Chem 135(3):1020–1027. https://doi.org/10.1016/j.foodchem.2012.05.054
Lipinski CA (2000) Drug-like properties and the cause of poor solubility and poor permeability. J Pharmacol Toxicol Methods 44:235–249. https://doi.org/10.1016/S1056-8719(00)00107-6
Lipinski CA (2004) Lead- and drug-like compounds: the rule-of-five revolution. Drug Discov Today Technol 1:337–341. https://doi.org/10.1016/j.ddtec.2004.11.007
Liu L, Guo QX (2002) The driving forces in the inclusion complexation of cyclodextrins. J Incl Phenom Macrocycl Chem 42(1):1–14. https://doi.org/10.1023/A:1014520830813
Llana-Ruiz-Cabello M, Gutiérrez-Praena D, Puerto M, Pichardo S, Jos Á, Cameán AM (2015) In vitro pro-oxidant/antioxidant role of carvacrol, thymol and their mixture in the intestinal Caco-2 cell line. Toxicol In Vitro 29(4):647–656. https://doi.org/10.1016/j.tiv.2015.02.006
Loftsson T, Brewster ME (2010) Pharmaceutical applications of cyclodextrins: basic science and product development. J Pharm Pharmacol 62(11):1607–1621. https://doi.org/10.1111/j.2042-7158.2010.01030.x
Loftsson T, Duchêne D (2007) Cyclodextrins and their pharmaceutical applications. Int J Pharm 329:1–11. https://doi.org/10.1016/j.ijpharm.2006.10.044
Loftsson T, Hreinsdóttir D, Másson M (2005) Evaluation of cyclodextrin solubilization of drugs. Int J Pharm 302(1–2):18–28. https://doi.org/10.1016/j.ijpharm.2005.05.042
Lopez-Nicolas JM, Perez-Lopez AJ, Carbonell-Barrachina A, Garcia-Carmona F (2007) Use of natural and modified cyclodextrins as inhibiting agents of peach juice enzymatic browning. J Agric Food Chem 55(13):5312–5319. https://doi.org/10.1021/jf070499h
Lopez-Nicolas JM, Andreu-Sevilla AJ, Carbonell-Barrachina ÁA, García-Carmona F (2009) Effects of addition of α-cyclodextrin on the sensory quality, volatile compounds, and color parameters of fresh pear juice. J Agric Food Chem 57(20):9668–9675. https://doi.org/10.1021/jf901919t
Lopez-Nicolas JM, Rodríguez-Bonilla P, García-Carmona F (2014) Cyclodextrins and antioxidants. Crit Rev Food Sci 54(2):251–276. https://doi.org/10.1080/10408398.2011.582544
Lu Z, Cheng B, Hu Y, Zhang Y, Zou G (2009) Complexation of resveratrol with cyclodextrins: solubility and antioxidant activity. Food Chem 113(1):17–20. https://doi.org/10.1016/j.foodchem.2008.04.042
Lucas-Abellán C, Mercader-Ros MT, Zafrilla MP, Fortea MI, Gabaldon JA, Nunez-Delicado E (2008) ORAC-fluorescein assay to determine the oxygen radical absorbance capacity of resveratrol complexed in cyclodextrins. J Agric Food Chem 56:2254–2259. https://doi.org/10.1021/jf0731088
Marchese A, Erdogan I, Daglia M, Barbieri R, Di A, Fazel S, Gortzi O, Izadi M, Mohammad S (2016) Antibacterial and antifungal activities of thymol: a brief review of the literature. Food Chem 210:402–414. https://doi.org/10.1016/j.foodchem.2016.04.111
Marques HMC (2010) A review on cyclodextrin encapsulation of essential oils and volatiles. Flavour Fragr J 25(5):313–326. https://doi.org/10.1002/ffj.2019
Marreto RN, Almeida EECV, Alves PB, Niculau ES, Nunes RS, Matos CRS, Araújo AAS (2008) Thermal analysis and gas chromatography coupled mass spectrometry analyses of hydroxypropyl-β-cyclodextrin inclusion complex containing Lippia gracilis essential oil. Thermochim Acta 475:53–58. https://doi.org/10.1016/j.tca.2008.06.015
Martina K, Binello A, Lawson D, Jicsinszky L, Cravotto G (2013) Recent applications of cyclodextrins as food additives and in food processing. Curr Nutr Food Sci 9(3):167–179. https://doi.org/10.2174/1573401311309030001
Martins ADP, Craveiro AA, MacHado MIL, Raffin FN, Moura TF, Novák C, Ehen Z (2007) Preparation and characterisation of Mentha x villosa Hudson oil–β-cyclodextrin complex. J Therm Anal Calorim 88(2):363–371. https://doi.org/10.1007/s10973-005-7407-z
Mascheroni E, Fuenmayor CA, Cosio MS, Di Silvestro G, Piergiovanni L, Mannino S, Schiraldi A (2013) Encapsulation of volatiles in nanofibrous polysaccharide membranes for humidity-triggered release. Carbohydr Polym 98(1):17–25. https://doi.org/10.1016/j.carbpol.2013.04.068
Mazzobre MF, dos Santos CI, Buera M (2011) Solubility and stability of β- cyclodextrin-terpineol inclusion complex as affected by water. Food Biophys 6(2):274–280. https://doi.org/10.1007/s11483-011-9208-1
Menezes PDP, Serafini MR, de Carvalho YMBG, Soares Santana DV, Lima BS, Quintans-Júnior LJ, Marreto RN, de Aquino TM, Sabino AR, Scotti L, Scotti MT, Grangeiro-Júnior S, de Souza Araújo AA (2016) Kinetic and physical-chemical study of the inclusion complex of β- cyclodextrin containing carvacrol. J Mol Struct 1125:323–330. https://doi.org/10.1016/j.molstruc.2016.06.062
Miguel MG, Dandlen SA, Figueiredo AC, Pedro LG, Barroso JG, Marques MH (2010) Comparative evaluation of the antioxidant activities of thymol and carvacrol and the corresponding β-cyclodextrin complexes. Acta Hortic 853:363–368. https://doi.org/10.17660/ActaHortic.2010.853.44
Miller LA, Carrier RL, Ahmed I (2007) Practical considerations in development of solid dosage forms that contain cyclodextrin. J Pharm Sci 96(7):1691–1707. https://doi.org/10.1002/jps.20831
Miron D, Battisti F, Schwengber Ten Caten C, Mayorga P, Scherman Schapoval EE (2012) Spectrophotometric simultaneous determination of citral isomers in cyclodextrin complexes with partial least squares supported approach. Curr Pharm Anal 8(4):401–408. https://doi.org/10.2174/157341212803341735
Moreira SM, de Carvalho W, Alexandrino AC, de Paula HCB, Rodrigues MCP, de Figueiredo RW, Maia GA, de Figueiredo EMAT, Brasil IM (2014) Int J Food Sci Technol 49(10):2192–2203. https://doi.org/10.1111/ijfs.12535
Morelli CL, Mahrous M, Belgacem MN, Branciforti MC, Bretas RES, Bras J (2015) Natural copaiba oil as antibacterial agent for bio-based active packaging. Ind Crop Prod 70:134–141. https://doi.org/10.1016/j.indcrop.2015.03.036
Mourtzinos I, Kalogeropoulos N, Papadakis SE, Konstantinou K, Karathanos VT (2008) Encapsulation of nutraceutical monoterpenes in β-cyclodextrin and modified starch. J Food Sci 73(1):89–94. https://doi.org/10.1111/j.1750-3841.2007.00609.x
Mura P (2014) Analytical techniques for characterization of cyclodextrin complexes in aqueous solution: a review. J Pharm Biomed Anal 10:238–250. https://doi.org/10.1016/j.jpba.2014.02.022
Murbach Teles Andrade BF, Conti BJ, Santiago KB, Fernandes Junior A, Sforcin JM (2014) Cymbopogon martinii essential oil and geraniol at noncytotoxic concentrations exerted immunomodulatory/ anti-inflammatory effects in human monocytes. J Pharm Pharmacol 66(10):1491–1496. https://doi.org/10.1111/jphp.12278
Nazzaro F, Fratianni F, Martino LD (2013) Effect of essential oils on pathogenic bacteria. Pharmaceuticals 6(12):1451–1474. https://doi.org/10.3390/ph6121451
Neoh TL, Yoshii H, Furuta T (2006) Encapsulation and release characteristics of carbon dioxide in α-cyclodextrin. J Incl Phenom Macrocycl Chem 56:125–133. https://doi.org/10.1007/s10847-006-9073-6
Nieddu M, Rassu G, Boatto G, Bosi P, Trevisi P, Giunchedi P, Carta A, Gavini E (2014) Improvement of thymol properties by complexation with cyclodextrins: In vitro and in vivo studies. Carbohydr Polym 102:393–399. https://doi.org/10.1016/j.carbpol.2013.10.084
Nowakowski M, Ejchart A (2014) Complex formation of fenchone with α- cyclodextrin: NMR titrations. J Incl Phenom Macro 79(3–4):337–342. https://doi.org/10.1007/s10847-013-0356-4
Numanoglu U, Şen T, Tarimci N, Kartal M, Koo OMY, Önyüksel H (2007) Use of cyclodextrins as a cosmetic delivery system for fragrance materials: linalool and benzyl acetate. AAPS PharmSciTech 8(4):85. https://doi.org/10.1208/pt0804085
Nunez-Delicado E, Sanchez-Ferrer A, Garcia-Carmona F (1997) Cyclodextrins as secondary antioxidants: synergism with ascorbic acid. J Agric Food Chem 45(8):2830–2835. https://doi.org/10.1021/jf9609800
Pagington JS (1987) β-Cyclodextrin: the success of molecular inclusion. Chem Br 23(5):455–458
Papajani V, Haloci E, Goci E, Shkreli R, Manfredini S (2015) Evaluation of antifungal activity of Origanum vulgare and Rosmarinus officinalis essential oil before and after inclusion in β-cyclodextrine. Int J Pharm Pharm Sci 7(5):5–8
Paramera EI, Konteles SJ, Karathanos VT (2011) Stability and release properties of curcumin encapsulated in Saccharomyces cerevisiae, β- cyclodextrin and modified starch. Food Chem 125(3):913–922. https://doi.org/10.1016/j.foodchem.2010.09.071
Partanen R, Ahro M, Hakala M, Kallio H, Forssell P (2002) Microencapsulation of caraway extract in β-cyclodextrin and modified starches. Eur Food Res Technol 214(3):242–247. https://doi.org/10.1007/s00217-001-0446-1
Pavela R, Benelli G (2016) Essential oils as ecofriendly biopesticides ? Challenges and constraints. Trends Plant Sci 21(12):1000–1007. https://doi.org/10.1016/j.tplants.2016.10.005
Pein M, Preis M, Eckert C, Kiene FE (2014) Taste-masking assessment of solid oral dosage forms-a critical review. Int J Pharm 465(1–2):239–254. https://doi.org/10.1016/j.ijpharm.2014.01.036
Perricone M, Arace E, Corbo MR, Sinigaglia M, Bevilacqua A (2015) Bioactivity of essential oils: a review on their interaction with food components. Front Microbiol 6:76. https://doi.org/10.3389/fmicb.2015.00076
Pinho E, Grootveld M, Soares G, Henriques M (2014) Cyclodextrins as encapsulation agents for plant bioactive compounds. Carbohydr Polym 101:121–135. https://doi.org/10.1016/j.carbpol.2013.08.078
Ponce Cevallos PA, Buera MP, Elizalde BE (2010) Encapsulation of cinnamon and thyme essential oils components (cinnamaldehyde and thymol) in β-cyclodextrin: effect of interactions with water on complex stability. J Food Eng 99(1):70–75. https://doi.org/10.1016/j.jfoodeng.2010.01.039
Prakash B, Kedia A, Mishra PK, Dubey NK (2015) Plant essential oils as food preservatives to control moulds, mycotoxin contamination and oxidative deterioration of Agri-food commodities – potentials and challenges. Food Control 47:381–391. https://doi.org/10.1016/j.foodcont.2014.07.023
Qi ZH, Hedges AR (1995) Use of cyclodextrins for flavours. In: Ho CT, Tan CT, Tong CH (eds) Flavour technology: physical chemistry, modification and process, ACS symposium series 610. American Chemical Society, Washington, DC, pp 231–243
Radu CD, Parteni O, Ochiuz L (2016) Applications of cyclodextrins in medical textiles — review. J Control Release 224:146–157. https://doi.org/10.1016/j.jconrel.2015.12.046
Rakmai J, Cheirsilp B, Torrado-agrasar A, Simal Gandara J, Mejuto JC, Torrado-agrasar A (2017a) Encapsulation of yarrow essential oil in hydroxypropyl-beta-cyclodextrin: physiochemical characterization and evaluation of bio-efficacies. CyTA J Food 0:1–9. https://doi.org/10.1080/19476337.2017.1286523
Rakmai J, Cheirsilp B, Carlos J, Torrado-agrasar A (2017b) Physico-chemical characterization and evaluation of bio efficacies of black pepper essential oil encapsulated in hydroxypropyl-beta-cyclodextrin. Food Hydrocoll 65:157–164. https://doi.org/10.1016/j.foodhyd.2016.11.014
Rakshit R (2011) Skin care textiles - a review. Man-Made Text India 39(3):81–85
Rashed AA, Mohd Nawi MN, Sulaiman K (2017) Assessment of essential oil as a potential anti- obesity agent: a narrative review assessment of essential oil as a potential anti- obesity agent: a narrative review. J Essent Oil Res 29(1):1–10. https://doi.org/10.1080/10412905.2016.1213668
Raut JS, Karuppayil SM (2014) A status review on the medicinal properties of essential oils. Ind Crop Prod 62:250–264. https://doi.org/10.1016/j.indcrop.2014.05.055
Reineccius TA, Reineccius GA, Peppard TL (2002) Encapsulation of flavors using cyclodextrins: comparison of flavor retention in alpha, beta, and gamma types. J Food Sci 67(9):3271–3279. https://doi.org/10.1111/j.1365-2621.2002.tb09577.x
Reineccius TA, Reineccius GA, Peppard TL (2004) Utilization of β-cyclodextrin for improved flavor retention in thermally processed foods. J Food Sci 69(1):58–62. https://doi.org/10.1111/j.1365-2621.2004.tb17856.x
Ribeiro-Santos R, Andrade M, Sanches-Silva A (2017) Application of encapsulated essential oils as antimicrobial agents in food packaging. Curr Opin Food Sci 14:78–84. https://doi.org/10.1016/j.cofs.2017.01.012
Ruktanonchai UR, Srinuanchai W, Saesoo S, Sramala I, Puttipipatkhachorn S, Soottitantawat A (2011) Encapsulation of citral isomers in extracted lemongrass oil with cyclodextrins: molecular modeling and physicochemical characterizations. Biosci Biotechnol Biochem 75(12):2340–2345. https://doi.org/10.1271/bbb.110523
Sagiri SS, Anis A, Pal K (2016) Review on encapsulation of vegetable oils: strategies, preparation methods, and applications. Polym Plast Technol Eng 55(3):291–311. https://doi.org/10.1080/03602559.2015.1050521
Santos EH, Kamimura JA, Hill LE, Gomes CL (2015) Characterization of carvacrol beta-cyclodextrin inclusion complexes as delivery systems for antibacterial and antioxidant applications. Food Sci Technol 60(1):583–592. https://doi.org/10.1016/j.lwt.2014.08.046
Sharifi-rad J, Sureda A, Tenore GC, Daglia M, Sharifi-rad M, Valussi M, Tundis R, Sharifi-Rad Loizzo MR, Ademiluyi AO, Sharifi-Rad R, Ayatollahi SA, Iriti M (2017) Biological activities of essential oils: from plant chemoecology to traditional healing systems. Molecules 22(1):70. https://doi.org/10.3390/molecules22010070
Sherry M, Charcosset C, Fessi H, Greige-Gerges H (2013) Essential oils encapsulated in liposomes: a review. J Liposome Res 23(4):268–275. https://doi.org/10.3109/08982104.2013.819888
Stella VJ, He Q (2008) Cyclodextrins. Toxicol Pathol 36(1):30–42. https://doi.org/10.1177/0192623307310945
Suvarna V, Gujar P, Murahari M (2017) Complexation of phytochemicals with cyclodextrin derivatives – an insight. Biomed Pharmacother 88:1122–1144. https://doi.org/10.1016/j.biopha.2017.01.157
Szejtli J (2003) Cyclodextrins in the textile industry. Starch 55(5):191–196. https://doi.org/10.1002/star.200390050
Szejtli J (2004) Past, present and future of cyclodextrin research. Pure Appl Chem 76:1825–1844
Szejtli J, Szente L (2005) Elimination of bitter, disgusting tastes of drugs and foods by cyclodextrins. Eur J Pharm Biopharm 61(3):115–125. https://doi.org/10.1016/j.ejpb.2005.05.006
Szente L, Szejtli J (2004) Cyclodextrins as food ingredients. Trends Food Sci Technol 15(3–4):137–142. https://doi.org/10.1016/j.tifs.2003.09.019
Tamamoto LC, Schmidt SJ, Lee SY (2010) Sensory properties of ginseng solutions modified by masking agents. J Food Sci 75(7):341–347. https://doi.org/10.1111/j.1750-3841.2010.01749.x
Tanemura I, Saito Y, Ueda H, Sato T (1998) Solubility method using static head-space gas chromatography for determination of the stability constants of fragrance materials with 2- hydroxypropyl-β-cyclodextrin. Chem Pharm Bull 46(3):540–541
Tao F, Hill LE, Peng Y, Gomes CL (2014) Synthesis and characterization of β-cyclodextrin inclusion complexes of thymol and thyme oil for antimicrobial delivery applications. Food Sci Technol 59(1):247–255. https://doi.org/10.1016/j.lwt.2014.05.037
Tian XN, Jiang ZT, Li R (2008) Inclusion interactions and molecular microcapsule of Salvia sclarea L. essential oil with β-cyclodextrin derivatives. Eur Food Res Technol 227(4):1001–1007. https://doi.org/10.1007/s00217-007-0813-7
Tisserand R, Young R (2014) Essential oil safety. A guide for health care professionals, 2nd edn. Churchill Livingstone, London, pp 23–38
Del Toro-Sanchez CL, Ayala-Zavala JF, Machi L, Santacruz H, Villegas-Ochoa MA, Alvarez-Parrilla E, Gonzalez-Aguilar GA (2010) Controlled release of antifungal volatiles of thyme essential oil from β -cyclodextrin capsules. J Incl Phenom Macrocycl Chem 67:431–441. https://doi.org/10.1007/s10847-009-9726-3
Turek C, Stintzing FC (2013) Stability of essential oils: a review. Compr Rev Food Sci Food Saf 12(1):40–53. https://doi.org/10.1111/1541-4337.12006
Uyar T, Hacaloglu J, Besenbacher F (2009) Reactive & Functional Polymers Electrospun polystyrene fibers containing high temperature stable volatile fragrance / flavor facilitated by cyclodextrin inclusion complexes. React Funct Polym 69(3):145–150. https://doi.org/10.1016/j.reactfunctpolym.2008.12.012
Voncina B, Vivod V (2013) Cyclodextrins in textile finishing. In: Günay M (ed) Textile dyeing. InTech, Tijeka, Croatia., Chapter 3, p 53. https://doi.org/10.5772/53777
Waleczek KJ, Marques HMC, Hempel B, Schmidt PC (2003) Phase solubility studies of pure (− ) - α-bisabolol and camomile essential oil with β –cyclodextrin. Eur J Pharm Biopharm 55:247–251. https://doi.org/10.1016/S0939-6411(02)00166-2
Wang CX, Chen SL (2005) Fragrance-release property of β-cyclodextrin inclusion compounds and their application in aromatherapy. J Ind Text 34(3):157–166
Wang J, Cao Y, Sun B, Wang C (2011) Physicochemical and release characterisation of garlic oil-β-cyclodextrin inclusion complexes. Food Chem 127(4):1680–1685. https://doi.org/10.1016/j.foodchem.2011.02.036
Xu F, Yang Q, Wu L, Qi R, Wu Y, Li Y, Tang L, Gua D, Liu B (2017) Investigation of inclusion complex of patchouli alcohol with β–cyclodextrin. PLoS One 35:1–10. https://doi.org/10.1371/journal.pone.0169578
Yamamoto C, Neoh TL, Honbou H, Yoshii H, Furuta T (2012) Kinetic analysis and evaluation of controlled release of D-limonene encapsulated in spray-dried cyclodextrin powder under linearly ramped humidity. Dry Technol 30(11–12):1283–1291. https://doi.org/10.1080/07373937.2012.681089
Yang Z, Xiao Z, Ji H (2015) Solid inclusion complex of terpinen-4-ol/ β-cyclodextrin: kinetic release, mechanism and its antibacterial activity. Flavour Frag J 30(2):179–187. https://doi.org/10.1002/ffj.3229
Yang Z, Huang L, Ji H (2017) Host-guest complexes of estragole with β-cyclodextrin: an experimental and theoretical investigation. Flavour Frag J 32(2):102–111. https://doi.org/10.1002/ffj.3358
Yoshii H, Sakane A, Kawamura D, Neoh T, Kajiwara H, Furuta T (2007) Release kinetics of (−)-menthol from chewing gum. J Incl Phenom Macrocycl Chem 57(1–4):591–596. https://doi.org/10.1007/s10847-006-9279-7
Zeng Z, Fang Y, Jin H (2012) Side chain influencing the interaction between β-cyclodextrin and vanillin. Flavour Fragr J 27:378–385. https://doi.org/10.1002/ffj.3115
Zhao M, Wang H, Yang B, Tao H (2010) Identification of cyclodextrin inclusion complex of chlorogenic acid and its antimicrobial activity. Food Chem 120(4):1138–1142. https://doi.org/10.1016/j.foodchem.2009.11.044
Zhu G, Xiao Z, Zhu G, Niu Y (2016) Encapsulation of l-menthol in hydroxypropyl-β-cyclodextrin and release characteristics of the inclusion complex. Pol J Chem Technol 18(3):110–116. https://doi.org/10.1515/pjct-2016-0056
Acknowledgments
Authors thank Marc Fourmentin from the university of the Littoral Opal Coast (ULCO), France for the illustrations.
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2018 Springer International Publishing AG, part of Springer Nature
About this chapter
Cite this chapter
Kfoury, M., Auezova, L., Greige-Gerges, H., Fourmentin, S. (2018). Cyclodextrins for Essential Oils Applications. In: Fourmentin, S., Crini, G., Lichtfouse, E. (eds) Cyclodextrin Applications in Medicine, Food, Environment and Liquid Crystals. Environmental Chemistry for a Sustainable World, vol 17. Springer, Cham. https://doi.org/10.1007/978-3-319-76162-6_4
Download citation
DOI: https://doi.org/10.1007/978-3-319-76162-6_4
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-76161-9
Online ISBN: 978-3-319-76162-6
eBook Packages: Earth and Environmental ScienceEarth and Environmental Science (R0)