Abstract
Cyclodextrins are natural oligosaccharides obtained from starch. They were discovered in 1891 by Villiers, and attracted major scientific and industrial interests from the late 1970s. Actually, cyclodextrins are among the most remarkable macrocyclic molecules with major theoretical and practical interest for chemistry and biology. Cyclodextrins belong to the family of cage molecules due to their structure, which is composed of a hydrophobic cavity that can encapsulate other molecules. Indeed, the most characteristic feature of cyclodextrins is their ability to form inclusion complexes with various molecules through host-guest interactions. Cyclodextrins and their derivatives have a wide variety of practical applications including pharmacy, medicine, foods, cosmetics, toiletries, catalysis, chromatography, biotechnology, nanotechnology, and textile production. Cyclodextrins are also the object of numerous fundamental studies. Between 2011 and 2015, 18,430 cyclodextrin-related publications have been published. In this chapter, after a brief description of cyclodextrin basics, we highlight selected works on cyclodextrins published over the last 5 years by various research groups.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Abdel-Halim ES, Fouda MMG, Hamdy I, Abdel-Mohdy FA, El-Sawy SM (2010) Incorporation of chlorohexidin diacetate into cotton fabrics grafted with glycidyl methacrylate and cyclodextrin. Carbohydr Polym 79:47–53. https://doi.org/10.1016/j.carbpol.2009.07.050
Agostoni V, Horcajada P, Noiray M, Malanga M, Aykaç A, Jicsinszky L, Vargas-Berenguel A, Semiramoth N, Daoud-Mahammed S, Nicolas V, Martineau C, Taulelle F, Vigneron J, Etcheberry F, Serre C, Gref R (2015) A “green” strategy to construct non-covalent, stable and bioactive coatings on porous MOF nanoparticles. Sci Rep 5:7925. https://doi.org/10.1038/srep07925
Ahuja A, Baboota S, Ali J, Mustafa G (2011) Cyclodextrins as potential excipients in pharmaceutical formulations: solubilizing and stabilizing effects. In: Bilensoy E (ed) Cyclodextrins in pharmaceutics, cosmetics and biomedicine: current and future industrial. John Wiley. Chapter 2, Hoboken, pp 19–43. https://doi.org/10.1002/9780470926819
Alsbaiee A, Smith BJ, Xiao L, Ling YH, Helbling DE, Dichtel WR (2016) Rapid removal of organic micropollutants from water by a porous beta-cyclodextrin polymer. Nature 529:190–U146. https://doi.org/10.1038/nature16185
Ammala A (2013) Biodegradable polymers as encapsulation materials for cosmetics and personal care markets. Int J Cosmet Sci 35:113–124. https://doi.org/10.1111/ics.12017
Ammayappan L, Moses JJ (2009) An overview on application of cyclodextrins in textile product enhancement. J Text Assoc 70:9–18
Andreaus J, Dalmolin MC, De Oliveira IB, Barcellos IO (2010) Application of cyclodextrins in textile processes. Quim Nova 33:929–937. https://doi.org/10.1590/S0100-40422010000400031
Appendini P, Hotchkiss JH (2002) Review of antimicrobial food packaging. Innovative Food Sci Emerg Technol 3:113–126. https://doi.org/10.1016/S1466-8564(02)00012-7
Armspach D, Gattuso G, Koeniger R, Stoddart JF (1999) Cyclodextrins. In: Hecht SM (ed) Bioorganic chemistry: carbohydrates. Oxford University Press, New York, pp 458–488
Artiss JD, Brogan K, Brucal M, Moghaddam M, Jen KL (2006) The effects of a new soluble dietary fiber on weight gain and selected blood parameters in rats. Metabolism 55:195–202
Assaf KI, Gabel D, Zimmermann W, Nau WM (2016) High-affinity host-guest chemistry of large-ring cyclodextrins. Org Biomol Chem 14:7702–7706. https://doi.org/10.1039/c6ob01161f
Astray G, Gonzalez-Barreiro C, Mejuto JC, Rial-Otero R, Simal-Gandara J (2009) A review on the use of cyclodextrins in foods. Food Hydrocoll 23:1631–1640. https://doi.org/10.1016/j.foodhyd.2009.01.001
Atteia O, Estrada ED, Bertin H (2013) Soil flushing: a review of the origin of efficiency variability. Rev Environ Sci Biotechnol 12:379–389. https://doi.org/10.1007/s11157-013-9316-0
Atwood JL, Steed JW (2004) Encyclopedia of supramolecular chemistry. Marcel Dekker, Inc., New-York
Atwood JL, Steed JW (2009) Supramolecular chemistry, 2nd edn. John Wiley, Chichester
Atwood JL, Davies EE, MacNicol DD (1984) Inclusion compounds. Academic Press, Michigan
Auzely-Vélty R (2011) Self-assembling polysaccharide systems based on cyclodextrin complexation: synthesis, properties and potential applications in the biomaterials field. CR Chim 14:167–177. https://doi.org/10.1016/j.crci.2010.04.019
Aytac Z, Uyar T (2016) Antioxidant activity and photostability of α-tocopherol/β-cyclodextrin inclusion complex encapsulated electrospun polycaprolactone nanofibers. Eur Polym J 79:140–149. https://doi.org/10.1016/j.eurpolymj.2016.04.029
Aytac Z, Uyar T (2017) Core-shell nanofibers of curcumin/cyclodextrin inclusion complex and polylactic acid: enhanced water solubility and slow release of curcumin. Int J Pharm 518:177–184. https://doi.org/10.1016/j.ijpharm.2016.12.061
Aytac Z, Sen HS, Durgun E, Uyar T (2015) Sulfisoxazole/cyclodextrin inclusion complex incorporated in electrospun hydroxypropyl cellulose nanofibers as drug delivery system. Colloids Surf B Biointerfaces 128:331–338. https://doi.org/10.1016/j.colsurfb.2015.02.019
Aytac Z, Yildiz ZI, Kayaci F, San NO, Kusku SI, Durgun E, Tekinay T, Uyar T (2016a) Fast-dissolving, prolonged release and antibacterial cyclodextrin/limonene-inclusion complex nanofibrous webs via polymer-free electrospinning. J Agric Food Chem 64:7325–7334. https://doi.org/10.1021/acs.jafc.6b02632
Aytac Z, Yildiz ZI, Kayaci F, San NO, Tekinay T, Uyar T (2016b) Electrospinning of polymer-free cyclodextrin/geraniol-inclusion complex nanofibers: enhanced shelf-life of geraniol with antibacterial and antioxidant properties. RSC Adv 6:46089–46099. https://doi.org/10.1039/C6RA07088D
Banerjee SS, Chen DH (2008) Cyclodextrin conjugated magnetic colloidal nanoparticles as a nanocarrier for targeted anticancer drug delivery. Nanotechnology 19:265602. https://doi.org/10.1088/0957-4484/19/26/265602
Bar R (1996) Applications of cyclodextrins in biotechnology. In: Szejtli J, Osa T (eds) Comprehensive supramolecular chemistry, Volume 3. Pergamon Oxford, London, pp 423–440
Bender H (1986) Production, characterization and applications of cyclodextrins. In: Liss AR (ed) Advances in biotechnological processes. Wiley. Chapter 6, New York, pp 31–71
Bender ML, Komiyama M (1978) Cyclodextrins chemistry. Springer Verlag, Berlin
Benkovics G, Fejős I, Darcsi A, Varga E, Malanga M, Fenyvesi É, Sohajda T, Szente L, Sz B, Szemán J (2016) Single-isomer carboxymethyl-γ-cyclodextrin as chiral resolving agent for capillary electrophoresis. J Chromatogr A 1467:445–453. https://doi.org/10.1016/j.chroma.2016.06.083
Berendt RT, Sperger DM, Isbester PK, Munson EJ (2006) Solid-state NMR spectroscopy in pharmaceutical research and analysis. TrAC Trends Anal Chem 25:977–984. https://doi.org/10.1016/j.trac.2006.07.006
Bergeron RJ (1984) Cycloamylose-substrate binding. In: Inclusion compounds - physical properties and applications. Atwood JL, Davies JED, MacNicol DD, eds. London: Academic Press. Volume 3, chapter 12, pp 391-443. ISBN-13: 978-0120671038
Bhaskara-Amrit UR, Agrawal PB, Warmoeskerken MMCG (2011) Applications of β-cyclodextrins in textiles. Autex Res J 11:94–101. http://autexrj.org/No4-2011-/0020_11.pdf
Bhosale SV, Bhosale SV (2007) Beta-cyclodextrin as a catalyst in organic synthesis. Mini-Rev Org Chem 4:231–242. https://doi.org/10.2174/157019307781369922
Bilensoy E (2011) Cyclodextrins in pharmaceutics, cosmetics and biomedicine: current and future industrial applications. John Wiley, Hoboken, 395 p. https://doi.org/10.1002/9780470926819
Bilensoy E, Hincal AA (2009) Recent advances and future directions in amphiphilic cyclodextrin nanoparticles. Expert Opin Drug Deliv 6:1161–1173. https://doi.org/10.1517/17425240903222218
Booij LHDJ (2009) Cyclodextrins and the emergence of Sugammadex. Anaesthesia 64:31–37. https://doi.org/10.1111/j.1365-2044.2008.05868.x
Boztas AO, Karakuzu O, Galante G, Ugur Z, Kocabas F, Altuntas CZ, Yazaydin AO (2013) Synergistic interaction of paclitaxel and curcumin with cyclodextrin polymer complexation in human cancer cells. Mol Pharm 10:2676–2683. https://doi.org/10.1021/mp400101k
Brackman G, Garcia-Fernandez MJ, Lenoir J, De Meyer L, Remon JP, De Beer T, Concheiro A, Alvarez-Lorenzo C, Coenye T (2016) Dressings loaded with cyclodextrin-hamamelitannin complexes increase Staphylococcus aureus susceptibility toward antibiotics both in single as well as in mixed biofilm communities. Macromol Biosci 16:859–869. https://doi.org/10.1002/mabi.201500437
Brandariz I, Iglesias E (2013) Local anesthetics: acid-base behavior and inclusion with cyclodextrins. Curr Org Chem 10:3050–3063. https://doi.org/10.2174/13852728113179990023
Brewster ME, Loftsson T (2007) Cyclodextrins as pharmaceutical solubilizers. Adv Drug Deliv Rev 59:645–666. https://doi.org/10.1016/j.addr.2007.05.012
Buschmann HJ, Schollmeyer EJ (2002) Applications of cyclodextrins in cosmetic products: a review. J Cosmet Sci 53:185–191
Buschmann HJ, Schollmeyer E (2004) Cosmetic textiles: A new functionality of clothes. Cosmet Toiletries 11:105–112
Buschmann HJ, Denter U, Knittel D, Schollmeyer E (1998) The use of cyclodextrins in textile processes - an overview. J Text Inst 89:554–561. https://doi.org/10.1080/00405009808658641
Cabral Marques HM (2010) A review on cyclodextrin encapsulation of essential oils and volatiles. Flavour Fragr J 25:313–326. https://doi.org/10.1002/ffj.2019
Cairo MR (2011) Structural aspects of crystalline derivatized cyclodextrins and their inclusion complexes. Curr Org Chem 15:815–830. https://doi.org/10.2174/138527211794518862
Caliceti P, Salmaso S, Bersani S (2010) Polysaccharide-based anticancer prodrugs. In: Reddy LH, Couvreur P (eds) Macromolecular anticancer therapeutics. Springer, New York, pp 163–166
Calo JR, Crandall PG, O’Bryan CA, Ricke SC (2015) Essential oils as antimicrobials in food systems - a review. Food Control 54:111–119. https://doi.org/10.1016/j.foodcont.2014.12.040
Campos EVR, de Oliveira JL, Fraceto LF, Singh B (2015) Polysaccharides as safer release systems for agrochemicals. Agron Sustain Dev 35:47–66. https://doi.org/10.1007/s13593-014-0263-0
Celebioglu A, Uyar T (2012) Electrospinning of nanofibers from non-polymeric systems: polymer-free nanofibers from cyclodextrin derivatives. Nanoscale 4:621–631. https://doi.org/10.1039/c1nr11364j
Celebioglu A, Uyar T (2013a) Electrospinning of nanofibers from non-polymeric systems: electrospun nanofibers from native cyclodextrins. J Colloid Interface Sci 404:1–7. https://doi.org/10.1016/j.jcis.2013.04.034
Celebioglu A, Uyar T (2013b) Electrospun gamma-cyclodextrin (gamma-CD) nanofibers for the entrapment of volatile organic compounds. RSC Adv 3(45):22891–22895. https://doi.org/10.1039/C3RA44870C
Celebioglu A, Demirci S, Uyar T (2014a) Cyclodextrin-grafted electrospun cellulose acetate nanofibers via click reaction for removal of phenanthrene. Appl Surf Sci 305:581–588. https://doi.org/10.1016/j.apsusc.2014.03.138
Celebioglu A, Umu OCO, Tekinay T, Uyar T (2014b) Antibacterial electrospun nanofibers from triclosan/cyclodextrin inclusion complexes. Colloids Surf B Biointerfaces 116:612–619. https://doi.org/10.1016/j.colsurfb.2013.10.029
Celebioglu A, Sen HS, Durgun E, Uyar T (2016) Molecular entrapment of volatile organic compounds (VOCs) by electrospun cyclodextrin nanofibers. Chemosphere 144:736–744. https://doi.org/10.1016/j.chemosphere.2015.09.029
Charles J, Bradu C, Morin-Crini N, Sancey B, Winterton P, Torri G, Badot PM, Crini G (2016) Pollutant removal from industrial discharge water using individual and combined effects of adsorption and ion-exchange processes: Chemical abatement. J Saudi Chem Soc 20:185–194. https://doi.org/10.1016/j.jscs.2013.03.007
Chen G, Jiang M (2001) Cyclodextrin-based inclusion complexation bridging supramolecular chemistry and macromolecular self-assembly. Chem Soc Rev 40:2254–2266. https://doi.org/10.1039/c0cs00153h
Chilajwar SV, Pednekar PP, Jadhav KR, Gupta GJC, Kadam VJ (2014) Cyclodextrin-based nanosponges: A propitious platform for enhancing drug delivery. Expert Opin Drug Deliv 11:111–120. https://doi.org/10.1517/17425247.2014.865013
Citernesi U, Sciacchitano M (1995) Cyclodextrins in functional dermocosmetics. Cosmetics Toiletries 110:53–61
Clarke RJ, Coates JH, Lincoln SF (1988) Inclusion complexes of the cyclomalto-oligosaccharides (cyclodextrins). Adv Carbohydr Chem Biochem 46:205–249. https://doi.org/10.3998/ark.5550190.0006.e14
Concheiro A, Alvarez-Lorenzo C (2013) Chemically cross-linked and grafted cyclodextrin hydrogels: From nanostructures to drug-eluting medical devices. Adv Drug Deliv Rev 65:1188–1203. https://doi.org/10.1016/j.addr.2013.04.015
Connors KA (1997) The stability of cyclodextrin complexes in solution. Chem Rev 97:1325–1357. https://doi.org/10.1021/cr960371r
Costoya A, Concheiro A, Alvarez-Lorenzo C (2017) Electrospun fibers of cyclodextrins and poly(cyclodextrins). Molecules 22:230. https://doi.org/10.3390/molecules22020230
Cram DJ (1988) The design of molecular hosts, guests and their complexes. Angew Chem Int Ed 27(8):1009–1020. https://doi.org/10.1002/anie.198810093
Crini G (2006) Non-conventional adsorbents for dye removal: A review. Bioresour Technol 97:1061–1085. https://doi.org/10.1016/j.biortech.2005.05.001
Crini G (2014) Review: a history of cyclodextrins. Chem Rev 114:10940–10975. https://doi.org/10.1021/cr500081p
Crini G, Morcellet M (2002) Synthesis and applications of adsorbents containing cyclodextrins. J Sep Sci 25:789–813. https://doi.org/10.1002/1615-9314(20020901)25:13<789::AID-JSSC789>3.0.CO;2-J
Davidson CD, Fishman YI, Puskás I, Szemán J, Sohajda T, McCauliff LA, Sikora J, Storch J, Vanier MT, Szente L, Walkley SU, Dobrenis K (2016) Efficacy and ototoxicity of different cyclodextrins in Niemann-Pick C disease. Ann Clin Transl Neuro 3:366–380. https://doi.org/10.1002/acn3.306
Davis ME, Brewster ME (2004) Cyclodextrin-based pharmaceutics: past, present and future. Nat Rev Drug Discov 3:1023–1035. https://doi.org/10.1038/nrd1576
Davis F, Higson S (2011) Cyclodextrins. In: Davis F, Higson S (eds) Macrocycles: construction, chemistry and nanotechnology applications. John Wiley, United Kingdom. Chapter 6
Decock G, Fourmentin S, Surpateanu GG, Landy D, Decock P, Surpateanu G (2006) Experimental and theoretical study on the inclusion compounds of aroma components with β-cyclodextrins. Supramol Chem 18:477. https://doi.org/10.1080/10610270600665749
Decock G, Landy D, Surpateanu G, Fourmentin S (2008) Study of the retention of aroma components by cyclodextrins by static headspace gas chromatography. J Incl Phenom Macrocycl Chem 62:297. https://doi.org/10.1007/s10847-008-9471-z
Deorsola AC, Mothé CG, de Oliviera LG, Deorsola AB (2014) Technological monitoring of cyclodextrin – World panorama. World Patent Inf 39:41–49. https://doi.org/10.1016/j.wpi.2014.06.004
Dinker MK, Kulkarni PS (2015) Recent advances in silica-based materials for the removal of hexavalent chromium: a review. J Chem Eng Data 60:2521–2540. https://doi.org/10.1021/acs.jced.5b00292
Dodziuk H (2002) Introduction to supramolecular chemistry. Kluwer Academic Publishers, Dordrecht. 10.1007/0-306-47587-1 (e-book)
Dodziuk H (ed) (2006) Cyclodextrins and their complexes: chemistry, analytical methods, applications. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, 489p. https://doi.org/10.1002/3527608982
Donati F (2011) Sugammadex: a cyclodextrin-based novel formulation and marketing story. In: Bilensoy E (ed) Cyclodextrins in pharmaceutics, cosmetics and biomedicine: current and future industrial applications. John Wiley. Chapter 19, Hoboken, pp 636–370. https://doi.org/10.1002/9780470926819
Dondoni A, Marra A (2012) Recent applications of thiol-ene coupling as a click process for glycoconjugation. Chem Soc Rev 41:573–586. https://doi.org/10.1039/c1cs15157f
Dong HQ, Li YY, Li L, Shi DL (2011) Cyclodextrins/polymer based (pseudo)polyrotaxanes for biomedical applications. Prog Chem 23:914–922
Dong RJ, Zhou YF, Huang XH, Zhu XY, Lu YF, Shen J (2015) Functional supramolecular polymers for biomedical applications. Adv Mater 27:498–526. https://doi.org/10.1002/adma.201402975
Duchêne D (ed) (1987) Cyclodextrins and their industrial uses. Éditions de Santé, Paris
Duchêne D (ed) (1991) New trends in cyclodextrins and derivatives. Éditions de Santé, Paris
Duchêne D, Vaution C, Glomot F (1986) Cyclodextrins, their value in pharmaceutical technology. Drug Dev Ind Pharm 12:2193–2215
EFSA (2012) Scientific Opinion on the substantiation of health claims related to alpha-cyclodextrin and reduction of post prandial glycaemic responses (ID 2926, further assessment) pursuant to Article 13(1) of Regulation (EC) No 1924/2006. EFSA J 10:2713–2730. https://doi.org/10.2903/j.efsa.2012.2713
Endo T (2011) Large-ring cyclodextrins. Trends Glycosci Glycotechnol 23:79–92. https://doi.org/10.4052/tigg.23.79
Endo T, Ueda H (2004) Large ring cyclodextrins - recent progress. Fabad. J Pharm Sci 29:27–38. https://doi.org/10.1002/chin.200638261
Euvrard E, Morin-Crini N, Druart C, Bugnet J, Martel B, Cosentino C, Moutarlier V, Crini G (2016) Cross-linked cyclodextrin-based material for treatment of metals and organic substances present in industrial discharge waters. Beilstein J Org Chem 12:1826–1838. https://doi.org/10.3762/bjoc.12.172
Fakayode SO, Lowry M, Fletcher KA, Huang XD, Powe AM, Warner IM (2007) Cyclodextrins host-guest chemistry in analytical and environmental chemistry. Curr Anal Chem 3:171–181. https://doi.org/10.2174/157341107781023811
Fanali S (1993) Use of cyclodextrins in capillary electrophoresis. In: Capillary electrophoresis technology. Guzman NA, ed. New York: Marcel Dekker Inc. Chromatographic Science Series, Volume 64, part V, pp. 731–752. ISBN: 0-8247-9042-1
Fanali S, Cristalli M, Vespalec R, Bocek P (1994) Chiral separations in capillary electrophoresis. In: Chrambach A, Dunn MJ, Radola BJ (eds) Advances in electrophoresis. VCH Verlagsgesellschaft mbH. Chapter 7, Weinheim, pp 1–88
Fang Z, Bhandari B (2010) Encapsulation of polyphenols- A review. Trends Food Sci Technol 21:510–523. https://doi.org/10.1016/j.tifs.2010.08.003
Faugeras PA, Boens B, Elchinger PH, Brouillette F, Montplaisir D, Zerrouki R, Lucas R (2012) When cyclodextrins meet click chemistry. Eur J Org Chem (22):4087–4105. https://doi.org/10.1002/ejoc.201200013
Fenyvesi É (1988) Cyclodextrin polymers in the pharmaceutical industry. J Incl Phenom 6:537–545. https://doi.org/10.1007/BF00660751
Fenyvesi É, Szente (2016) Nanoencapsulation of flavors and aromas by cyclodextrins. In: Encapsulations: nanotechnology in the agri-food industry. Grumezescu A, ed. 1st edition. Volume 2, chapter 18, pp. 769–792. ISBN: 978-0-12-804378-3
Fenyvesi É, Vikmon MA, Szente L (2016) Cyclodextrins in food technology and human nutrition: benefits and limitations. Crit Rev Food Sci Nutr 56:1981–2004. https://doi.org/10.1080/10408398.2013.809513
Fernandes C, Encarnação I, Gaspar A, Garrido J, Borges F, Garrido EM (2014) Influence of hydroxypropyl-cyclodextrin on the photostability of fungicide pyrimethanil. Int J Photoenergy 2014:1–8. https://doi.org/10.1155/2014/489873
Ferro M, Castiglione F, Punta C, Meloni L, Panzeri W, Rossi B, Trotta F, Mele A (2014) Anomalous diffusion of ibuprofen in cyclodextrin nanosponge hydrogels: an HRMAS NMR study. Beilstein J Org Chem 10:2715–2723. https://doi.org/10.3762/bjoc.10.286
Ferro M, Castiglione F, Punta C, Meloni L, Panzeri W, Rossi B, Trotta F, Mele A (2016) Transport properties of ibuprofen encapsulated in cyclodextrin nanosponge hydrogels: a proton HR-MAS NMR spectroscopy study. J Vis Exp 114:53769. https://doi.org/10.3791/53769
Fraix A, Marino N, Sortino S (2015) Phototherapeutic release of nitric oxide with engineered nanoconstructs. In: Sortino S (ed) Light-responsive nanostructured systems for applications in nanomedicine. Springer, New York. https://doi.org/10.1007/978-3-319-22942-3_8
Fraix A, Marino N, Sortino S (2016) Phototherapeutic release of nitric oxide with engineered nanoconstructs. Top Curr Chem 370:225–257. https://doi.org/10.1007/978-3-319-22942-3_8
Frömming KH, Szejtli J (1994) Cyclodextrins in pharmacy. Kluwer Academic Publishers, Dordrecht
Fülöp Z, Kurkov SV, Nielsen TT, Larsen KL, Loftsson T (2012) Self-assembly of cyclodextrins: formation of cyclodextrin polymer based nanoparticles. J Drug Delivery Sci Technol 22:215–221. https://doi.org/10.1016/S1773-2247(12)50032-8
Garrido J, Cagide F, Melle-Franco M, Borges F, Garrido EM (2014) Microencapsulation of herbicide MCPA with native β-cyclodextrin and its methyl and hydroxypropyl derivatives: an experimental and theoretical investigation. J Mol Struct 1061:76–81. https://doi.org/10.1016/j.molstruc.2013.12.067
Ghemati D, Aliouche D (2014) Dye adsorption behavior of polyvinyl alcohol/glutaraldehyde/beta-cyclodextrin polymer membranes. J Appl Spectrosc 81(2):257–263. https://doi.org/10.1007/s10812-014-9919-4
Gibson LT (2014) Mesosilica materials and organic pollutant adsorption: Part B - Removal from aqueous solution. Chem Soc Rev 43(15):5173–5182. https://doi.org/10.1039/C3CS60095E
Glick D, Barth S, MacLeod KF (2010) Autophagy: cellular and molecular mechanisms. J Pathol 221:3–12. https://doi.org/10.1002/path.2697
Gontero D, Lessard-Viger M, Brouard D, Bracamonte AG, Boudreau D, Veglia AV (2017) Smart multifunctional nanoparticles design as sensors and drug delivery systems based on supramolecular chemistry. Microchem J 130:316–328. https://doi.org/10.1016/j.microc.2016.10.007
Gonzalez-Gaitano G, Rodriguez P, Isasi JR, Fuentes M, Tardajos G, Sanchez M (2003) The aggregation of cyclodextrins as studied by photon correlation spectroscopy. J Incl Phenom Macrocycl Chem 44:101–105. https://doi.org/10.1023/A:1023065823358
Gould S, Scott RC (2005) 2-Hydroxypropyl-beta-cyclodextrin (HP-beta-CD): a toxicology review. Food Chem Toxicol 43:1451–1459. https://doi.org/10.1016/j.fct.2005.03.007
Goyal AK, Johal ES, Rath G (2011) Nanotechnology for water treatment. Curr Nanosci 7:640–654. https://doi.org/10.2174/157341311796196772
Grigoriu AM, Luca C, Grigoriu A (2008) Cyclodextrins applications in the textile industry. Cellulose. Chem Technol 42:103–112
Gruiz K, Molnár M, Fenyvesi É, Cs H, Atkári Á, Barkács K (2011) Cyclodextrins in innovative engineering tools for risk-based environmental management. J Incl Phenom Macrocycl Chem 70:299–306. https://doi.org/10.1007/s10847-010-9909-y
Grumezescu AM (2016) Encapsulations. In: Nanotechnology in the agri-food industry. Academic Press Elsevier. 1st edition. vol 2, 924 p. ISBN: 978-0-12-804378-3
Guo R, Wilson LD (2013) Cyclodextrin-based microcapsule materials - their preparation and physiochemical properties. Curr Org Chem 17:14–21. https://doi.org/10.2174/138527213805289204
Han JH (2005) Innovations in food packaging. Food science and technology, international series. ISBN: 0-12-311632-5. 503 p
Han SM, Armstrong DW (1989) HPLC separation of enantiomers and other isomers with cyclodextrin-bonded phases: rules for chiral recognition. In: Krstulovic AM (ed) Chiral separations by HPLC. Ellis Horwood Limited, John Wiley & Sons. Chapter 10, New York, p 208
Hapiot F, Tilloy S, Monflier E (2006) Cyclodextrins as supramolecular hosts for organometallic complexes. Chem Rev 106:767–781. https://doi.org/10.1021/cr050576c
Hapiot F, Ponchel A, Tilloy S, Monflier E (2011) Cyclodextrins and their applications in aqueous-phase metal-catalyzed reactions. CR Chimie 14:149–166. https://doi.org/10.1016/j.crci.2010.04.003
Hapiot F, Bricout H, Menuel S, Tilloy S, Monflier E (2014) Recent breakthroughs in aqueous cyclodextrin-assisted supramolecular catalysis. Cat Sci Technol 4:1899–1908. https://doi.org/10.1039/C4CY00005F
Harada A, Takashima Y, Yamaguchi H (2009a) Cyclodextrin-based supramolecular polymers. Chem Soc Rev 38:875–882. https://doi.org/10.1039/B705458K
Harada A, Takashima Y, Yamaguchi H (2009b) Polymeric rotaxanes. Chem Rev 109:5974–6023. https://doi.org/10.1021/cr9000622
Harada A, Takashima Y, Nakahata M (2014) Supramolecular polymeric materials via cyclodextrin-guest interactions. Acc Chem Res 47:2128–2140. https://doi.org/10.1021/ar500109h
Hashimoto HJ (1996) Cyclodextrins in foods, cosmetics, and toiletries. In: Szejtli J, Osa T (eds) Comprehensive supramolecular chemistry, vol 3. Pergamon Oxford, London, pp 483–502
Hashimoto H (2002) Present status of industrial application of cyclodextrins in Japan. J Incl Phenom 44:57–62. https://doi.org/10.1023/A:1023036406829
Hashimoto H (2006) Cyclodextrin applications in food, cosmetic, toiletry, textile and wrapping materiel fields. In: Dodziuk H (ed) Cyclodextrins and their Complexes. Chemistry, Analytical Methods, Applications. Wiley-VCH, Verlag GmbH & Co. KGaA, Weinheim., Chapter 16, pp 452–459. https://doi.org/10.1002/3527608982.ch16
He LF, Beesley TE (2005) Applications of enantiomeric gas chromatography: A review. J Liq Chromatogr Relat Technol 28:1075–1114. https://doi.org/10.1081/JLC-200052997
He Y, Fu P, Shen X, Gao H (2008) Cyclodextrin-based aggregates and characterization by microscopy. Micron 39:495–516. https://doi.org/10.1016/j.micron.2007.06.017
Hebeish A, El-Hilw ZH (2001) Chemical finishing of cotton using reactive cyclodextrin. Color Technol 117:104–110. https://doi.org/10.1111/j.1478-4408.2001.tb00343.x
Hedges AR (1998) Industrial applications of cyclodextrins. Chem Rev 98:2035–2044. https://doi.org/10.1021/cr970014w
Hedges AR, Shieh WJ, Sikorski CT (1995) Use of cyclodextrins for encapsulation in the use and treatment of food products. In: Risch SJ, Reineccius GA. (eds) ACS Sym SerEncapsulation and controlled release of food ingredients, vol 590. American Chemical Soc, Washington, DC, pp 60–71
Herbstein FH (2005) Cyclodextrins, and some analogs, as hosts. In: Crystalline molecular complexes and compounds. Oxford Science Publications, vol 1. Oxford University Press, New York, p 73
Higdon J, Drake JV (2014) Curcumin. Available from: Linus Pauling Institute, Micronutrient Research for Optimum Health, Oregon State University. http://lpi.oregonstate.edu/infocenter/phytochemicals/curcumin
Hilton ML, Armstrong DW (1991) Contribution of cyclodextrins and derivatives to liquid chromatography. In: Duchêne D (ed) New trends in cyclodextrins and derivatives. Éditions de Santé, Paris, pp 517–549
Hirakawa H, Tomita H (2013) Interference of bacterial cell-to-cell communication: a new concept of antimicrobial chemotherapy breaks antibiotic resistance. Front Microbiol 4:114. https://doi.org/10.3389/fmicb.2013.00114
Ho TM, Howes T, Bhandari BR (2014) Encapsulation of gases in powder solid matrices and their applications: a review. Powder Technol 259:87–108. https://doi.org/10.1016/j.powtec.2014.03.054
Hong SB, Liu MY, Zhang W, Deng W (2015) Organic reactions catalyzed by cyclodextrin and its derivatives. Chin J Org Chem 35:325–336. https://doi.org/10.6023/cjoc201409001
Hongdeng Q, Xiaojing L, Min S, Shengxiang J (2011) Development of silica-based stationary phases for high-performance liquid chromatography. Anal Bioanal Chem 399:3307–3322. https://doi.org/10.1007/s00216-010-4611-x
Horák D, Beneš M, Procházková Z, Trchová M, Borysov A, Pastukhov A, Paliienko K, Borisova T (2017) Effect of O-methyl-β-cyclodextrin-modified magnetic nanoparticles on the uptake and extracellular level of l-glutamate in brain nerve terminals. Colloids Surf B Biointerfaces 149:64–71. https://doi.org/10.1016/j.colsurfb.2016.10.007
Hou XS, Ke CF, Stoddart JF (2016) Cooperative capture synthesis: yet another playground for copper-free click chemistry. Chem Soc Rev 45:3766–3780. https://doi.org/10.1039/c6cs00055j
Hougeir EG, Kircik L (2012) A review of delivery systems in cosmetics. Dermatol Therm 25:234–237. https://doi.org/10.1111/j.1529-8019.2012.01501.x
Iacovino R, Caso JV, Di Donato C, Malgieri G, Palmieri M, Russo L, Isernia C (2017) Cyclodextrins as complexing agents: preparation and applications. Curr Org Chem 21:1–15. https://doi.org/10.2174/1385272820666160909111842
Idriss H, Estour F, Zgani I, Barbot C, Biscotti A, Petit S, Galaup C, Hubert-Roux M, Nicol L, Mulder P, Gouhier G (2013) Effect of the second coordination sphere on new contrast agents based on cyclodextrin scaffolds for MRI signals. RSC Adv 3:4531. https://doi.org/10.1039/C3RA40314A
Irie T, Uekama K (1997) Pharmaceutical applications of cyclodextrins. III. Toxicological issues and safety evaluation. J Pharm Sci 86:147–162. https://doi.org/10.1021/js960213f
Islam SU, Shahid M, Mohammad F (2013) Green chemistry approaches to develop antimicrobial textiles based on sustainable biopolymers - a review. Ind Eng Chem Res 52:5245–5260. https://doi.org/10.1021/ie303627x
Jicsinszky L, Fenyvesi É, Hashimoto H (1996) Cyclodextrin derivatives. In: Szejtli J, Osa T (eds) Comprehensive supramolecular chemistry, vol 3, London, Pergamon Oxford, pp 57–188
Junthip J, Tabary N, Chai F, Leclercq L, Maton M, Cazaux F, Neut C, Paccou L, Guinet Y, Staelens JN, Bria M, Landy D, Hedoux A, Blanchemain N, Martel B (2016) Layer-by-layer coating of textile with two oppositely charged cyclodextrin polyelectrolytes for extended drug delivery. J Biomed Mater Res A 104:408–424. https://doi.org/10.1002/jbm.a.35674
Kainuma K (1984) Starch oligosaccharides: Linear, branched, and cyclic. In: Whistler RL, JN BM, Paschall EF (eds) Starch: chemistry and technology, 2nd edn. Academic Press, London, pp 125–152. 978-0-12-746270-7
Kali G, Eisenbarth H, Wenz G (2015) One pot synthesis of a polyisoprene polyrotaxane and conversion to a slide-ring gel. Macromol Rapid Commun. https://doi.org/10.1002/marc.201500548
Kano K (1993) Selectivities in cyclodextrin chemistry. In: Dugas H, Schmidtchen FP (eds) Bioorganic Chemistry Frontiers, vol 3. Springer-Verlag, Berlin, pp 1–23. 978-3-642-78110-0
Kanwar JR, Long BM, Kanwar RK (2011) The use of cyclodextrins nanoparticles for oral delivery. Curr Med Chem 18:2079–2085
Karim AA, Loh XJ (2016) Towards cyclodextrin-based supramolecular materials. In: Polymers for personnal care products and cosmetics. Chapter 9, pp 154–177. https://doi.org/10.1039/9781782623984-00154
Karoyo AH, Wilson LD (2015) Nano-sized cyclodextrin-based molecularly imprinted polymer adsorbents for perfluorinated compounds - a mini-review. Nanomaterials 5:981–1003. https://doi.org/10.3390/nano5020981
Kayaci F, Uyar T (2012) Encapsulation of vanillin/cyclodextrin inclusion complex in electrospun polyvinyl alcohol (PVA) nanowebs: Prolonged shelf-life and high temperature stability of vanillin. Food Chem 133:641–649. https://doi.org/10.1016/j.foodchem.2012.01.040
Kayaci F, Uyar T (2014) Electrospun polyester/cyclodextrin nanofibers for entrapment of volatile organic compounds. Polym Eng Sci 54(12):2970–2978. https://doi.org/10.1002/pen.23858
Kayaci F, Aytac Z, Uyar T (2013a) Surface modification of electrospun polyester nanofibers with cyclodextrin polymer for the removal of phenanthrene from aqueous solution. J Hazard Mater 261:286–294. https://doi.org/10.1016/j.jhazmat.2013.07.041
Kayaci F, Umu OCO, Tekinay T, Uyar T (2013b) Antibacterial electrospun polylactic acid (PLA) nanofibrous webs incorporating triclosan/cyclodextrin inclusion complexes. J Agric Food Chem 61:3901–3908. https://doi.org/10.1021/jf400440b
Kayaci F, Ertas Y, Uyar T (2013c) Enhanced thermal stability of eugenol by cyclodextrin inclusion complex encapsulated in electrospun polymeric nanofibers. J Agric Food Chem 61:8156–8165. https://doi.org/10.1021/jf402923c
Kayaci F, Sen HS, Durgun E, Uyar T (2014) Functional electrospun polymeric nanofibers ıncorporating geraniol-cyclodextrin ınclusion complexes: high thermal stability and enhanced durability of geraniol. Food Res Int 62:424–431. https://doi.org/10.1016/j.foodres.2014.03.033
Kayaci F, Sen HS, Durgun E, Uyar T (2015) Electrospun nylon 6,6 nanofibers functionalized with cyclodextrins for removal of toluene vapor. J Appl Polym Sci 132:41941. https://doi.org/10.1002/app.41941
Keskin NOS, Celebioglu A, Uyar T, Tekinay T (2015a) Microalgae immobilized by nanofibrous web for removal of reactive dyes from wastewater. Ind Eng Chem Res 54:5802–5809. https://doi.org/10.1021/acs.iecr.5b01033
Keskin NOS, Celebioglu A, Sarioglu OF, Ozkan AD, Uyar T, Tekinay T (2015b) Removal of a reactive dye and hexavalent chromium by a reusable bacteria attached electrospun nanofibrous web. RSC Adv 5:86867–86874. https://doi.org/10.1039/C5RA15601G
Kfoury M, Hădărugă NG, Hădărugă DI, Fourmentin S (2016) Cyclodextrins as encapsulation material for flavors and aroma. In: Encapsulations: nanotechnology in the agri-food industry, vol 2, 1st edn, pp 127–192. 978-0-12-804378-3
Khan AR, Forgo P, Stine KJ, D’Souza VT (1998) Methods for selective modifications of cyclodextrins. Chem Rev 98:1977–1996. https://doi.org/10.1021/cr970012b
Khaoulani S, Chaker H, Cadet C, Bychkov E, Cherif L, Bengueddach A, Fourmentin S (2015) Wastewater treatment by cyclodextrin polymers and noble metal/mesoporous TiO2 photocatalysts. CR Chimie 18:23–31. https://doi.org/10.1016/j.crci.2014.07.004
Kirejev V, Gonçalves AR, Aggelidou C, Manet I, Mårtensson J, Yannakopoulou K, Ericson MB (2014) Photophysics and ex vivo biodistribution of β-cyclodextrin-meso-tetra(m-hydroxyphenyl)porphyrin conjugate for biomedical applications. Photochem Photobiol Sci 13:1185–1191. https://doi.org/10.1039/c4pp00088a
Ko JA, Jeon JY, Park HJ (2012) Preparation and characterization of allyl isothiocyanate microcapsules by spray drying. J Food Biochem 36:255–261. https://doi.org/10.1111/j.1745-4514.2010.00533.x
Komiyama M (1996) Cyclodextrins as enzyme models. In: Szejtli J, Osa T (eds) Comprehensive supramolecular chemistry, vol 3. Pergamon Oxford, London, pp 401–422
Komiyama M, Monflier E (2006) Cyclodextrin catalysis. In: Dodziuk H (ed) Cyclodextrins and their complexes: chemistry, analytical methods, applications. Wiley-VCH, Verlag GmbH & Co. KGaA, Weinheim. Chapter 4, pp 93–105
Kozlowski CA, Sliwa W (2008) The use of membranes with cyclodextrin units in separation processes: recent advances. Carbohydr Polym 74:1–9. https://doi.org/10.1016/j.carbpol.2008.01.010
Kozlowski CA, Sliwa W (2010) Use of cyclodextrin polymers in separation of organic species. In: Polymer science and technology series. Nova Science Publishers, New York
Králová J, Kejík Z, Bríza T, Poucková P, Král A, Martásek P, Král V (2010) Porphyrin-cyclodextrin conjugates as a nanosystem for versatile drug delivery and multimodal cancer therapy. J Med Chem 53:128–138. https://doi.org/10.1021/jm9007278
Kurkov SV, Loftsson T (2013) Cyclodextrins. Int J Pharm 453:167–180. https://doi.org/10.1016/j.ijpharm.2012.06.055
Kushwaha D, Dwivedi P, Kuanar SK, Tiwari VK (2013) Click reaction in carbohydrate chemistry: recent developments and future perspective. Curr Org Synth 10:90–135. https://doi.org/10.2174/1570179411310010005
Landy D, Mallard I, Ponchel A, Monflier E, Fourmentin S (2012a) Cyclodextrins for remediation technologies. In: Lichtfouse E, Schwarzbauer J, Robert D (eds) Environmental chemistry for a sustainable world: nanotechnology and health risk, vol 1. Springer Verlag, Berlin, pp 47–81
Landy D, Mallard I, Ponchel A, Monflier E, Fourmentin S (2012b) Remediation technologies using cyclodextrins: an overview. Environ Chem Lett 10:225–237. https://doi.org/10.1007/s10311-011-0351-1
Larsen KL (2002) Large cyclodextrins. J Incl Phenom 43:1–13. https://doi.org/10.1023/A:1020494503684
Lay S, Ni XF, Yu HN, Shen SR (2016) State-of-the-art applications of cyclodextrins as functional monomers in molecular imprinting techniques: a review. J Sep Sci 39:2321–2331. https://doi.org/10.1002/jssc.201600003
Lee SY, Park SJ (2015) A review on solid adsorbents for carbon dioxide capture. J Ind Eng Chem 23:1–11. https://doi.org/10.1016/j.jiec.2014.09.001
Letort S, Balieu S, Erb W, Gouhier G, Estour F (2016) Interactions of cyclodextrins and their derivatives with toxic organophosphorus compounds. Beilstein J Org Chem 12:204–228. https://doi.org/10.3762/bjoc.12.23
Li J (2009) Cyclodextrin inclusion polymers forming hydrogels. In: Wenz G (ed) Inclusion polymers, Advances in polymer science, vol 222, pp 79–112. https://doi.org/10.1007/12_2008_9
Li S, Purdy WC (1992) Cyclodextrins and their applications in analytical chemistry. Chem Rev 92:1457–1470. https://doi.org/10.1021/cr00014a009
Li S, Vigh G (2004) Single-isomer sulfated alpha-cyclodextrins for capillary electrophoresis: Hexakis(2,3-di-O-methyl-6-O-sulfo)-alpha-cyclodextrin, synthesis, analytical characterization, and initial screening tests. Electrophoresis 25:2657–2670. https://doi.org/10.1002/elps.200405839
Li ZF, Wang M, Wang F, Gu ZB, Du GC, Wu J, Chen J (2007) gamma-Cyclodextrin: a review on enzymatic production and applications. Appl Microbiol Biotechnol 77:245–255. https://doi.org/10.1007/s00253-007-1166-7
Li JJ, Zhao F, Li J (2011) Polyrotaxanes for applications in life science and biotechnology. Appl Microbiol Biotechnol 90:427–443. https://doi.org/10.1007/s00253-010-3037-x
Lincoln SF, Easton CJ (1998) Inclusion complexes of the cyclodextrins. In: Polysaccharides: structural diversity and functional versatility. Dumitriu S, ed. New York: Marcel Dekker, Inc.. Chapter 14, pp 473–521. ISBN: 0-8247-0127-5
Loeve S, Normand M (2011) How to trust a molecule? The case of cyclodextrins entering the naorealm. In: Zülsdorf TB, Coenen C, Fiedeler U, Ferrari A, Milburn C, Wienroth M (eds) Quantum engagements: social reflections of nanoscience and emerging techologies. IOS Press AKA Verlag, Heidelberg, pp 195–216
Loftsson T, Brewster ME (2010) Pharmaceutical applications of cyclodextrins: basic science and product development. J Pharm Pharmacol 62:1607–1621. https://doi.org/10.1111/j.2042-7158.2010.01030.x
Loftsson T, Brewster ME (2012) Cyclodextrins as functional excipients: methods to enhance complexation efficiency. J Pharm Sci 101:3019–3032. https://doi.org/10.1002/jps.23077
Loftsson T, Duchêne D (2007) Cyclodextrins and their pharmaceutical applications: historical perspectives. Int J Pharm 329:1–11. https://doi.org/10.1016/j.ijpharm.2006.10.044
Loftsson T, Masson M, Brewster ME (2004) Self-association of cyclodextrins and cyclodextrin complexes. J Pharm Sci 93:1091–1099. https://doi.org/10.1002/jps.20047
López-Nicolás JM, Rodríguez-Bonilla P, García-Carmona F (2014) Cyclodextrins and antioxidants. Crit Rev Food Sci Nutr 54:251–276. https://doi.org/10.1080/10408398.2011.582544
Luca C, Grigoriu AM (2006) Cyclodextrins inclusion compounds. Rev Chim 57:248–252
Luca C, Grigoriu AM (2007) Cyclodextrins inclusion compounds in macromolecular chemistry. Cellul Chem Technol 41:1–12
Macaev F, Boldescu V (2015) Cyclodextrins in asymmetric and stereospecific synthesis. Symmetry 7:1699–1720. https://doi.org/10.3390/sym7041699
Macaev F, Boldescu V, Geronikaki A, Sucman N (2013) Recent advances in the use of cyclodextrins in antifungal formulations. Curr Top Med Chem 21:2677–2683. https://doi.org/10.2174/15680266113136660194
Maciollek A, Ritter H, Beckert R (2013) Superstructures of fluorescent cyclodextrin via click-reaction. Beilstein J Org Chem 9:827–831. https://doi.org/10.3762/bjoc.9.94
Maetzel D, Sarkar S, Wang H, Abi-Mosleh L, Xu P, Cheng AW, Gao Q, Mitalipova M, Jaenisch R (2014) Genetic and chemical correction of cholesterol accumulation and impaired autophagy in hepatic and neural cells derived from Niemann-Pick Type C patient-specific iPS cells. Stem Cell Rep 2:866–880. https://doi.org/10.1016/j.stemcr.2014.03.014
Mahmud ST, Wilson LD (2016) Synthesis and characterization of surface-modified mesoporous silica materials with beta-cyclodextrin. Cogent Chem 2:1132984. https://doi.org/10.1080/23312009.2015.1132984
Malanga M, Bálint M, Puskás I, Tuza K, Sohajda T, Jicsinszky L, Szente L, Fenyvesi É (2014) Synthetic strategies for the fluorescent labeling of epichlorohydrin-branched cyclodextrin polymers. Beilstein J Org Chem 10:3007–3018. https://doi.org/10.3762/bjoc.10.319
Mallard I, Baudelet D, Castiglione F, Ferro M, Panzeri W, Ragg E, Mele A (2015) Polydisperse methyl beta-cyclodextrin-epichlorohydrin polymers: variable contact time C-13 CP-MAS solid state NMR characterization. Beilstein J Org Chem 11:2785–2794. https://doi.org/10.3762/bjoc.11.299
Manchon JFM, Uzor NE, Kesler SR, Wefel JS, Townley DM, Nagaraja AS, Pradeep S, Mangala LS, Sood AK, Tsvetkov AS (2016) TFEB ameliorates the impairment of the autophagy-lysosome pathway in neurons induced by doxorubicin. Aging 8:3507–3519. https://doi.org/10.18632/aging.101144
Martel B, Morcellet M, Ruffin D, Vinet F, Weltrowski L (2002) Capture and controlled release of fragrances by CD finished textiles. J Incl Phenom Macrocycl Chem 44:439–442. https://doi.org/10.1023/A:1023028105012
Martin Del Valle EM (2004) Cyclodextrins and their uses. Process Biochem 39:1033–1046. https://doi.org/10.1016/S0032-9592(03)00258-9
Martina K, Binello A, Lawson D, Jicsinszky L, Cravotto G (2013) Recent applications of cyclodextrins as food additives and in food processing. Curr Nutr Food Sci 9:167–179. https://doi.org/10.2174/1573401311309030001
Mavridis IM, Yannakopoulou K (2015) Anionic cyclodextrins as versatile hosts for pharmaceutical nanotechnology: synthesis, drug delivery, enantioselectivity, contrast agents for MRI. Int J Pharma 492:275–290. https://doi.org/10.1016/j.ijpharm.2015.06.004
Mazzaglia A, Sciortino T, Kandoth N, Sortino S (2012) Cyclodextrin-based nanoconstructs for photoactivated therapies. J Drug Deliv Sci Technol 22:235–242. https://doi.org/10.1016/S1773-2247(12)50034-1
Melotti A, Mas C, Kuciak M, Lorente-Trigos A, Borges I, Ruiz i, Altaba A (2014) The river blindness drug ivermectin and related macrocyclic lactones inhibit WNT-TCF pathway responses in human cancer. EMBO Mol Med 6:1263–1278. https://doi.org/10.15252/emmm.201404084
Meng QR, Bai J, Li CP, Huang YR, Liu H, Li HQ (2014) Electrospun functional cyclodextrins/polystyrene (PS) composite nanofibers and their applications for sorption of Cu (II) ions under aqueous solution. Nanosci Nanotechnol Lett 6:289–294. https://doi.org/10.1166/nnl.2014.1768
Menges RA, Armstrong DW (1991) Chiral separations using native and functionalized cyclodextrin-bonded stationary phases in high-pressure liquid chromatography. In: Ahuja S (ed) Chiral Separations by Liquid Chromatography, ACS symposium series 471. Chapter 4, Washington, p 67. isbn:0841221162
Messner M, Kurkov SV, Jansook T, Loftsson T (2010) Self-assembled cyclodextrin aggregates and nanoparticles. Int J Pharm 387:199–208. https://doi.org/10.1016/j.ijpharm.2009.11.035
Mikus P, Sebesta R, Kaniansky D, Salisova M (2002) Cyclodextrins and their complexes - structure and interactions. Chem List 96:693–697
Miller KP, Wang L, Chen YP, Pellechia PJ, Benicewicz BC, Decho AW (2015) Engineering nanoparticles to silence bacterial communication. Front Microbiol 6:189. https://doi.org/10.3389/fmicb.2015.00189
Mocanu G, Vizitiu D, Carpov A (2001) Cyclodextrins polymers. J Bioact Compat Polym 16:315–342
Morillo E (2006) Application of cyclodextrins in agrochemistry. In: Dodziuk H (ed) Cyclodextrins and their Complexes: chemistry, analytical methods, applications. Wiley-VCH, Verlag GmbH & Co. KGaA. Chapter 16, Weinheim, pp 459–467
Morin-Crini N, Crini G (2013) Environmental applications of water-insoluble β-cyclodextrin-epichlorohydrin polymers. Prog Polym Sci 38:344–368. https://doi.org/10.1016/j.progpolymsci.2012.06.005
Morin-Crini N, Fourmentin S, Crini G (2015) Cyclodextrines (in French). Besançon: PUFC. 370 p. ISBN: 978-2-84867-520-6
Morohoshi T, Tokita K, Ito S, Saito Y, Maeda S, Kato K, Ikeda T (2013) Inhibition of quorum sensing in gram-negative bacteria by alkylamine-modified cyclodextrins. J Biosci Bioeng 116:175–179. https://doi.org/10.1016/j.jbiosc.2013.01.022
Mosher G, Thompson DO (2002) Complexation and cyclodextrins. In: Swarbrick J, JCE B (eds) Encyclopedia of pharmaceutical technology, 2nd edn. Marcel Dekker, New York, pp 531–558
Mosinger J, Tomankova V, Nemcova I, Zyka J (2001) Cyclodextrins in analytical chemistry. Anal Lett 34:1979–2004. https://doi.org/10.1081/AL-100106834
Motoyama K, Hirai Y, Nishiyama R, Maeda Y, Higashi T, Ishitsuka Y, Kondo Y, Irie T, Era T, Arima H (2015) Cholesterol lowering effects of mono-lactose-appended beta-cyclodextrin in Niemann-Pick type C disease-like HepG2 cells. Beilstein J Org Chem 11:2079–2086. https://doi.org/10.3762/bjoc.11.224
Motoyama K, Nishiyama R, Maeda Y, Higashi T, Kawaguchi Y, Futaki S, Ishitsuka Y, Kondo Y, Irie T, Era T, Arima H (2016) Cholesterol-lowering effect of octaarginine-appended beta-cyclodextrin in Npc1-Trap-CHO cells. Biol Pharm Bull 39:1823–1829. https://doi.org/10.1248/bpb.b16-00369
Mourer M, Hapiot F, Monflier E, Menuel S (2008) Click chemistry as an efficient tool to access β-cyclodextrin dimers. Tetrahedron 64:7159–7163. https://doi.org/10.1016/j.tet.2008.05.095
Moya-Ortega M, Alvarez-Lorenzo C, Concheiro A, Loftsson T (2012) Cyclodextrin-based nanogels for pharmaceuticals and biomedical applications. Int J Pharm 428:152–163. https://doi.org/10.1016/j.ijpharm.2012.02.038
Mura P (2015) Analytical techniques for characterization of cyclodextrin complexes in the solid state: a review. J Pharm Biomed Anal 113:226–238. https://doi.org/10.1016/j.jpba.2015.01.058
Murakami T, Schmidt BVKJ, Brown HR, Hawker CJ (2017) Structural versatility in slide-ring gels: influence of co-threaded cyclodextrin spacers. J Polym Sci A Polym Chem 55:1156–1165. https://doi.org/10.1002/pola.28490
Nagy ZM, Molnár M, Fekete-Kertész I, Molnár-Perl I, Fenyvesi É, Gruiz K (2014) Removal of emerging micropollutants from water using cyclodextrins. Sci Total Environ 485-486:711–719. https://doi.org/10.1016/j.scitotenv.2014.04.003
Nepogodiev S, Fraser Stoddart J (1998) Cyclodextrin-based catenanes and rotaxanes. Chem Rev 98:1959–1576. https://doi.org/10.1021/cr970049w
Nielsen TT, Wintgens V, Amiel C, Wimmer R, Larsen KL (2010) Facile synthesis of β-cyclodextrin-dextran polymers by “click” chemistry. Biomacromol 11:1710–1715. https://doi.org/10.1021/bm9013233
Norena-Caro D, Alvarez-Lainez M (2016) Functionalization of polyacrylonitrile nanofibers with beta-cyclodextrin for the capture of formaldehyde. Mater Des 95:632–640. https://doi.org/10.1016/j.matdes.2016.01.106
Okano C, Nasuno E, Iimura K, Kato N (2016) Cyclodextrin-immobilized microspheres for uptake of the quorum-sensing signaling molecule N-acylhomoserine lactone. J Appl Polym Sci 133:43198. https://doi.org/10.1002/app.43198
Oliveri V, Vecchio G (2016) Cyclodextrins as protective agents of protein aggregation: an overview. Chem Asian J 11:1648–1657. https://doi.org/10.1002/asia.201600259
Ozbilgin S, Yilmaz O, Ergur BU, Hanci V, Ozbal S, Yurtlu S, Gunenc SF, Kuvaki B, Kucuk BA, Sisman AR (2016) Effectiveness of sugammadex for cerebral ischemia/reperfusion injury. Kaohsiung J Med Sci 32:292–301. https://doi.org/10.1016/j.kjms.2016.05.002
Perez-Anes A, Gargouri M, laure W, Van Den Berghe H, Courcot E, Sobocinski J, Tabary N, Chai F, Blach JF, Addad A, Woisel P, Douroumis D, Martel B, Blanchemain N, Lyskawa J (2015) Bioinspired titanium drug eluting platforms based on a poly-beta-cyclodextrin-chitosan layer-by-layer self-assembly targeting infections. ACS Appl Mater Interfaces 7:12882–12893. https://doi.org/10.1021/acsami.5b02402
Pessine FBT, Calderini A, Alexandrino GL (2012) Review: cyclodextrin inclusion complexes probed by NMR techniques. In: Dong-Hyun K. (ed) Magnetic resonance spectroscopy. In TECH, Rijeak, chapter 2, pp 237–264. https://doi.org/10.5772/32029
Pinho E, Grootveld M, Soares G, Henriques M (2014) Cyclodextrin-based hydrogels toward improved wound dressings. Crit Rev Biotechnol 34:328–337. https://doi.org/10.3109/07388551.2013.794413
Potrzebowski MJ, Kazmierski S (2005) High-resolution solid-state NMR studies of inclusion complexes. In: Klinowski J (ed) New Techniques in solid-state NMR, Topics in current chemistry, vol 246, pp 91–140. https://doi.org/10.1007/b98649
Prochowicz D, Kornowicz A, Justyniak I, Lewinski J (2016) Metal complexes based on native cyclodextrins: synthesis and structural diversity. Coord Chem Rev 306:331–345. https://doi.org/10.1016/j.ccr.2015.07.016
Rezanka M (2016) Monosubstituted cyclodextrins as precursors for further use. Eur J Org Chem (32):5322–5334. https://doi.org/10.1002/ejoc.201600693
Ripoll L, Bordes C, Etheve S, Elaissari A, Fessi H (2010) Cosmeto-textile from formulation to characterization: an overview. e-Polymers:040. https://doi.org/10.1515/epoly.2010.10.1.409
Robyt JF (1998) Cyclodextrins. In: Essentials of carbohydrate of chemistry. New York: Springer-Verlag, p. 245–261. ISBN: 978-1-4612-7220-5 (print). DOI https://doi.org/10.1007/978-1-4612-1622-3
Romi R, Nostro PL, Bocci E, Ridi F, Baglioni P (2005) Bioengineering of a cellulosic fabric for insecticide delivery via grafted cyclodextrin. Biotechnol Prog 21:1724–1730. https://doi.org/10.1021/bp050276g
Ryzhakov A, Thi TD, Stappaerts J, Bertoletti L, Kimpe K, Couto ARS, Saokham P, Van den Mooter G, Augustijns P, Somsen GW, Kurkov S, Inghelbrecht S, Arien A, Jimidar MI, Schrijnemakers K, Loftsson T (2016) Self-assembly of cyclodextrins and their complexes in aqueous solutions. J Pharm Sci 105:2556–2569. https://doi.org/10.1016/j.xphs.2016.01.019
Saenger W (1980) Cyclodextrin inclusion compounds in research and industry. Angew Chem Int Ed 19:344–362. https://doi.org/10.1002/anie.198003441
Saenger W (1984) Structural aspects of cyclodextrins and their inclusion complexes. In: Inclusion compounds - structural aspects of inclusion compounds formed by organic host lattices. Atwood JL, Davies JED, MacNicol DD, eds. London: Academic Press. Volume 2, pp. 231–259. ISBN-13: 978-0120671021
Samiey B, Cheng CH, Wu JG (2014) Organic-inorganic hybrid polymers as adsorbent for removal of heavy metal ions from solutions: a review. Materials 7:673–726. https://doi.org/10.3390/ma7020673
Saokham P, Loftsson T (2017) gamma-Cyclodextrin. Int J Pharm 516:278–292. https://doi.org/10.1016/j.ijpharm.2016.10.062
Schmid G (1996) Enzymology of cyclodextrins. In: Szejtli J, Osa T (eds) Comprehensive supramolecular chemistry, vol 3. Pergamon Oxford, London, pp 615–626
Schmidt BVKJ, Hetzer M, Ritter H, Barner-Kowollik C (2014) Complex macromolecular architecture design via cyclodextrin host/guest complexes. Prog Polym Sci 39:235–249. https://doi.org/10.1016/j.progpolymsci.2013.09.006
Schneider HJ (2012) Applications of supramolecular chemistry. CRC Press, Boca Raton
Schneider HJ, Yatsimirsky AK (2000) Principles and methods in supramolecular chemistry. John Wiley, Chichester
Schneider HJ, Hacket F, Rüdiger V, Ikeda H (1998) NMR Studies of cyclodextrins and cyclodextrin complexes. Chem Rev 98:1755–1785. https://doi.org/10.1021/cr970019t
Schneiderman E, Stalcup AM (2000) Cyclodextrins: a versatile tool in separation science. J Chromatogr B 745:83–102. https://doi.org/10.1016/S0378-4347(00)00057-8
Scriba GKE (2016) Chiral recognition in separation science - an update. J Chromatogr A 1467:56–78. https://doi.org/10.1016/j.chroma.2016.05.061
Senthamizhan A, Balusamy B, Celebioglu A, Uyar T (2016) Nanotraps in porous electrospun fibers for effective removal of lead(II) in water. J Mater Chem A 4:2484–2493. https://doi.org/10.1039/C5TA09166G
Sharma N, Baldi A (2016) Exploring versatile applications of cyclodextrins: an overview. Drug Deliv 23:739–757. https://doi.org/10.3109/10717544.2014.938839
Shaw NO, De Villiers MM, Lotter AP (1999) Preformulation stability screening of ivermectin with non-ionic emulsion excipients. Pharmazie 54:372–376
Shen H, Ji H (2011) Application of cyclodextrin derivatives in liquid-phase organic synthesis. Chin J Org Chem 31:791–803
Shen HM, Ji HB, Wu HK, Shi HX (2014a) Recent advances in the immobilization of beta-cyclodextrin and their application. Chin J Org Chem 34:1549–1572. https://doi.org/10.6023/cjoc201402024
Shen W, Zhang GH, Guo N, Li YT (2014b) Study on the inclusion compound of avermectin by infrared spectroscopy. Guang Pu Xue Yu Guang Pu Fen Xi 34:1201–1205. https://doi.org/10.3964/j.issn.1000-0593(2014)05-1201-05
Shieh WJ, Hedges AR (1996) Properties and applications of cyclodextrins. J Macromol Sci Pure Appl Chem A33:673–683. https://doi.org/10.1080/10601329608010886
Silva A, Duarte A, Sousa S, Ramos A, Domingues FC (2016) Characterization and antimicrobial activity of cellulose derivatives films incorporated with a resveratrol inclusion complex. LWT-Food Sci Technol 73:481–489. https://doi.org/10.1016/j.lwt.2016.06.043
Simoes SMN, Veiga F, Torres-Labandeira JJ, Ribeiro ACF, Concheiro A, Alvarez-Lorenzo C (2014) Syringeable self-assembled cyclodextrin gels for drug delivery. Curr Top Med Chem 14:494–509. https://doi.org/10.2174/1568026613666131219124308
Singh M, Sharma R, Banerjee UC (2002) Biotechnological applications of cyclodextrins. Biotechnol Adv 20:341–359. https://doi.org/10.1016/S0734-9750(02)00020-4
Smaldone RA, Forgan RS, Furukawa H, Gassensmith JJ, Slawin AMZ, Yaghi OM Stoddart JF (2010) Metal-organic frameworks from edible natural products. Angew Chem Int Ed 49:8630–8634. https://doi.org/10.1002/anie.201002343
Smolková-Keulemansová E (1982) Cyclodextrins as stationary phases in chromatography. J Chromatogr 251:17–34. https://doi.org/10.1002/jhrc.1240120113
Stella VJ, He Q (2008) Cyclodextrins. Toxicol Pathol 36:30–42. https://doi.org/10.1177/0192623307310945
Sun DW (2012) Handbook of frozen food processing and packaging. Boca Raton: CRC Press. ISBN: 978-1-4398-3604-0. 936 p
Sybilska D, Zukowski J (1989) Cyclodextrin additives. In: Krstulovic AM (ed) Chiral separations by HPLC. Ellis Horwood Limited, John Wiley. Chapter 7, New York, p 147
Szejtli J (1982a) Cyclodextrins and their inclusion complexes. Akademiai Kiado, Budapest
Szejtli J (1982b) Cyclodextrins in food, cosmetics and toiletries. Starch/Stärke 34:379–385. https://doi.org/10.1002/star.19820341106
Szejtli J (1984) Industrial applications of cyclodextrins. In: Atwood JL, JED D, DD MN (eds) Inclusion compounds, vol 3. Academic Press, London, pp 331–390
Szejtli J (1987) The metabolism, toxicity and biological effects of cyclodextrins. In: Duchêne D (ed) Cyclodextrins and their industrial uses. Editions de Santé, Paris. Chapter 5, pp 173–210
Szejtli J (1988) Cyclodextrin technology. Kluwer Academic Publishers, Dordrecht
Szejtli J (1990) The cyclodextrins and their applications in biotechnology. Carbohydr Polym 12:375–392. https://doi.org/10.1016/0144-8617(90)90088-A
Szejtli J (1991) The use of cyclodextrins in biotechnological operations. In: Duchêne D (ed) New trends in cyclodextrins and derivatives. Éditions de Santé, Paris, pp 595–626
Szejtli J (1996) Use of cyclodextrins in chemical products and processes. In: Szejtli J, Osa T (eds) Comprehensive supramolecular chemistry, vol 3. Pergamon Oxford, London, pp 603–614
Szejtli J (1997) Utilization of cyclodextrins in industrial products and processes. J Mater Chem 7:575–587. https://doi.org/10.1039/A605235E
Szejtli J (1998) Introduction and general overview of cyclodextrin chemistry. Chem Rev 98:1743–1753. https://doi.org/10.1021/cr970022c
Szejtli J (2004a) Past, present and future of cyclodextrin research. Pure Appl Chem 76:1825–1845
Szejtli J (2004b) Cyclodextrins. In: Chemical and functional properties of food saccharides. Tomasik P, ed. New York: CRC Press. Chapter 17, p. 272–290. ISBN 0-8493-1486-0
Szente L (1996a) Analytical methods for cyclodextrins, cyclodextrin derivatives, and cyclodextrin complex. In: Szejtli J, Osa T (eds) Comprehensive supramolecular chemistry, vol 3. Pergamon Oxford, London, pp 253–278
Szente L (1996b) Preparation of cyclodextrin complexes. In: Szejtli J, Osa T (eds) Comprehensive supramolecular chemistry, vol 3. Pergamon Oxford, London, pp 243–252
Szente L, Szejtli J (1996) Cyclodextrins in pesticides. In: Szejtli J, Osa T (eds) Comprehensive supramolecular chemistry, vol 3. Pergamon Oxford, London, pp 503–514
Szente L, Szejtli J (2004) Cyclodextrins as food ingredients. Trends Food Sci Technol 15:137–142. https://doi.org/10.1016/j.tifs.2003.09.019
Szente L, Szeman J, Sohajda T (2016) Analytical characterization of cyclodextrins: history, official methods and recommended new techniques. J Pharm Biomed Anal 130:347–365. https://doi.org/10.1016/j.jpba.2016.05.009
Taka AL, Pillay K, Mbianda XY (2017) Nanosponge cyclodextrin polyurethanes and their modification with nanomaterials for the removal of pollutants from waste water: a review. Carbohydr Polym 159:94–107. https://doi.org/10.1016/j.carbpol.2016.12.027
Tamura A, Yui N (2015) beta-Cyclodextrin-threaded biocleavable polyrotaxanes ameliorate impaired autophagic flux in Niemann-Pick type C disease. J Biol Chem 290:9442–9454. https://doi.org/10.1074/jbc.M114.636803
Tan S, Ladewig K, Fu Q, Blencowe A, Qiao GG (2014) Cyclodextrin-based supramolecular assemblies and hydrogels: recent advances and future perspectives. Macromol Rapid Commun 35:1166–1184. https://doi.org/10.1002/marc.201400080
Tanaka Y, Yamada Y, Ishitsuka Y, Matsuo M, Shiraishi K, Wada K, Uchio Y, Kondo Y, Takeo T, Nakagata N, Higashi T, Motoyama K, Arima H, Mochinaga S, Higaki K, Ohno K, Irie T (2015) Efficacy of 2-hydroxypropyl-β-cyclodextrin in Niemann-pick disease type C model mice and its pharmacokinetic analysis in a patient with the disease. Biol Pharm Bull 38:844–851. https://doi.org/10.1248/bpb.b14-00726
Tarimci N (2011) Cyclodextrins in the cosmetic field. In: Bilensoy E (ed) Cyclodextrins in pharmaceutics, cosmetics and biomedicine. John Wiley, London., Chapter 7, pp. 131–144. https://doi.org/10.1002/9780470926819.ch7
Tejashri G, Amrita B, Darshana J (2013) Cyclodextrin based nanosponges for pharmaceutical use: a review. Acta Pharm 63:335–358. https://doi.org/10.2478/acph-2013-0021
Terekhova IV, Kulikov OV (2005) Cyclodextrins: physical-chemical aspects of formation complexes host-guest and molecular selectivity in relation to biologically active compounds. In: Chemistry of polysaccharides. Zaikov GE, ed. London: CRC Press. Chapter 2, pp. 38–70. ISBN: 9789067644198
Thompson DO (2006) Cyclodextrins – Enabling excipients: a case study of the development of a new excipient – Sulfobutylether β-cyclodextrin (CAPTISOL®). In: Excipient development for pharmaceutical, biotechnology, and drug delivery systems. Katdare A, Chaubal MV, eds. New York: CRC Press. pp. 51–68. ISBN:978-1-4200-0413-7. (e-book - pdf)
Tong J, Chen LG (2013) Review: preparation and application of magnetic chitosan derivatives in separation processes. Anal Lett 46:2635–2656. https://doi.org/10.1080/00032719.2013.807815
Trotta F, Dianzani C, Caldera F, Mognetti B, Cavalli R (2014) The application of nanosponges to cancer drug delivery. Expert Opin Drug Deliv 11(6):931–941. https://doi.org/10.1517/17425247.2014.911729
Trotta F, Caldera F, Dianzani C, Argenziano M, Barrera G, Cavalli R (2015) New glutathione bio-responsive cyclodextrin nanosponges. ChemPlusChem 81:439–443. https://doi.org/10.1002/cplu.201500531
Tungala K, Adhikary P, Krishnamoorthi S (2013) Trimerization of β-cyclodextrin through the click reaction. Carbohydr Polym 95:295–298. https://doi.org/10.1016/j.carbpol.2013.02.074
Ueda H (2002) Physicochemical properties and complex formation abilities of large-ring cyclodextrins. J Incl Phenom Macrocycl Chem 44:53–56. https://doi.org/10.1023/A:1023055516398
Uekama K, Irie T (1996) Pharmaceutical use of cyclodextrins in various drug formulations. In: Szejtli J, Osa T (eds) Comprehensive supramolecular chemistry, vol 3. Pergamon Oxford, London, pp 451–482
Ueno A (1996) Review: fluorescent cyclodextrins for molecule sensing. Supramol Sci 3:31–36. https://doi.org/10.1016/0968-5677(96)00016-8
Valente AJM, Söderman O (2014) The formation of host-guest complexes between surfactants and cyclodextrins. Adv Colloid Int Sci 205:156–176. https://doi.org/10.1016/j.cis.2013.08.001
Valetti S, Xia X, Costa-Gouveia J, Brodin P, Bernet-Camard MF, Andersson M, Feiler A (2017) Clofazimine encapsulation in nanoporous silica particles for the oral treatment of antibiotic-resistant mycobacterium tuberculosis infections. Nanomedicine (Lond) 12(8):831–844. https://doi.org/10.2217/nnm-2016-0364
Van de Manakker F, Vermonden T, Van Nostrum CF, Hennink WE (2009) Cyclodextrin-based polymeric materials: synthesis, properties, and pharmaceutical/biomedical applications. Biomacromol 10:3157–3175. https://doi.org/10.1021/bm901065f
Vaution C, Hutin M (1987) The use of cyclodextrins in various industries. In: Duchêne D (ed) Cyclodextrins and their industrial uses. Éditions de Santé, Paris, pp 297–350
Vecsernyés M, Fenyvesi F, Bácskay I, Deli MA, Szente L, Fenyvesi É (2014) Cyclodextrins, blood-brain barrier, and treatment of neurological diseases. Arch Med Res 45:711–729. https://doi.org/10.1016/j.arcmed.2014.11.020
Venturini CDG, Nicolini J, Machado C, Machado VG (2008) Properties and recent applications of cyclodextrins. Quim Nova 31:360–368. https://doi.org/10.1590/S0100-40422008000200032
Vetter W, Bester K (2006) Gas chromatographic enantioseparation of chiral pollutants - techniques and results. In: Busch KW, Busch MA (eds) Chiral separation. Elsevier, The Netherlands. Chapter 6, pp 131–228
Villalonga R, Cao R, Fragoso A (2007) Supramolecular chemistry of cyclodextrin in enzyme technology. Chem Rev 107:3088–3116. https://doi.org/10.1021/cr050253g
Voncina, B (2011). Application of cyclodextrins in textile dyeing. In: Textile dyeing, Hauser P, ed. Rijeka: InTech. Chapter 17, pp 373–392. ISBN: 978-953-307-565-5
Voncina B, Vivod V (2013) Cyclodextrins in textile finishing. In: Günay M (ed) Textile dyeing. InTech. Chapter 3, Rijeka, pp 53–75. https://doi.org/10.5772/53777
Vunain E, Mishra AK, Mamba BB (2016) Dendrimers, mesoporous silicas and chitosan-based nanosorbents for the removal of heavy-metal ions: a review. Int J Biol Macromol 86:570–586. https://doi.org/10.1016/j.ijbiomac.2016.02.005
Walkley SU, Davidson CD, Jacoby J, Marella PD, Ottinger EA, Austin CP, Porter FD, Vite CH, Ory DS (2016) Fostering collaborative research for rare genetic disease: the example of niemann-pick type C disease. Orphanet J Rare Dis 11:161. https://doi.org/10.1186/s13023-016-0540-x
Wang HF, Zhang LM (2010) Molecularly imprinted functional materials based on polysaccharides. Prog Chem 22:2165–2172
Ward TJ, Armstrong DW (1988) Cyclodextrin-stationary phases. In: Zief M, Crane LJ (eds) Chromatographic chiral separations. Marcel Dekker Inc., Chapter 5, New York, p 131
Ward C, Martinez-Lopez N, Otten EG, Carroll B, Maetzel D, Singh R, Sarkar S, Korolchuk VI (2016) Autophagy, lipophagy and lysosomal lipid storage disorders. Biochim Biophys Acta 1861:269–284. https://doi.org/10.1016/j.bbalip.2016.01.006
Wei ZZ, Liu YL, Hu HM, Yu JY, Li FX (2016) Biodegradable poly(butylene succinate-co-terephthalate) nanofibrous membranes functionalized with cyclodextrin polymer for effective methylene blue adsorption. RSC Adv 6:108240–108246. https://doi.org/10.1039/C6RA22941G
Wenz G (2009) Recognition of monomers and polymers by cyclodextrins. Incl Polym 222:1–54. https://doi.org/10.1007/12_2008_13
Wenz G, Han BH, Müller A (2006) Cyclodextrin rotaxanes and polyrotaxanes. Chem Rev 106:782–817. https://doi.org/10.1021/cr970027+
West C (2014) Enantioselective separations with supercritical fluids – review. Curr Anal Chem 10:99–120. https://doi.org/10.2174/1573411011410010009
Wu HQ, Kong JH, Yao XY, Zhao CY, Dong YL, Lu XH (2015a) Polydopamine-assisted attachment of beta-cyclodextrin on porous electrospun fibers for water purification under highly basic condition. Chem Eng J 270:101–109. https://doi.org/10.1016/j.cej.2015.02.019
Wu ZL, Song N, Menz R, Pingali B, Yang YW, Zheng YB (2015b) Nanoparticles functionalized with supramolecular host-guest systems for nanomedicine and healthcare. Nanomedicine 10:1493–1514. https://doi.org/10.2217/NNM.15.1
Xiao Y, Ng SC, Tan TTY, Wang Y (2012) Recent development of cyclodextrin chiral stationary phases and their applications in chromatography. J Chromatogr A 1269:52–68. https://doi.org/10.1016/j.chroma.2012.08.049
Xiao N, Wen Q, Liu QW, Yang QB, Li YX (2014) Electrospinning preparation of beta-cyclodextrin/glutaraldehyde crosslinked PVP nanofibrous membranes to adsorb dye in aqueous solution. Chem Res Chin Univ 30:1057–1062. https://doi.org/10.1007/s40242-014-4203-y
Yamamoto E, Kuroda K (2016) Colloidal mesoporous silica nanoparticles. Bull Chem Soc Jpn 89:501–539. https://doi.org/10.1246/bcsj.20150420
Yang LPH, Keam SJ (2009) Sugammadex: a review of its use in anaesthetic practice. Drugs 69:919–942. https://doi.org/10.2165/00003495-200969070-00008
Yang JS, Yang L (2013) Preparation and application of cyclodextrin immobilized polysaccharides. J Mater Chem B 1:909–918. https://doi.org/10.1039/c2tb00107a
Yokoo M, Kubota Y, Motoyama K, Higashi T, Taniyoshi M, Tokommaru H, Nishiyama R, Tabe Y, Mochinaga S, Sato A, Sueoka-Aragane N, Sueoka E, Arima H, Irie T, Kimura S (2015) 2-Hydroxypropyl-β-cyclodextrin acts as a novel anticancer agent. PLoS One 10:e0141946. https://doi.org/10.1371/journal.pone.0141946
Yuan Z, Zhang L (2016) Photoinduced controlled-release drug delivery systems for applications in nanomedicine. Curr Org Chem 20:1768–1785. https://doi.org/10.2174/1385272820666160112001944
Yusoff SNM, Kamari A, Aljafree NFA (2016) A review of materials used as carrier agents in pesticide formulations. Int J Environ Sci Technol 13:2977–2994. https://doi.org/10.1007/s13762-016-1096-y
Zarzycki PK, Fenert BE, Głód BK (2016) Cyclodextrins-based nanocomplexes for encapsulation of bioactive compounds in food, cosmetics, and pharmaceutical products: Principles of supramolecular complexes formation, their influence on the antioxidative properties of target chemicals, and recent advances in selected industrial applications. In: Encapsulations. nanotechnology in the agri-food industry. Grumezescu A (ed). Chapter 17, pp 717–767. ISBN: 978-0-12-804378-3
Zgani I, Idriss H, Barbot C, Djedaïni-Pilard F, Petit S, Hubert-Roux M, Estour F, Gouhier G (2017) Positive variation of the MRI signal via intramolecular inclusion complexation of a C-2 functionalized β-cyclodextrin. Org Biomol Chem 15:564–569. https://doi.org/10.1039/c6ob02583h
Zhang J, Ma PX (2013) Cyclodextrin-based supramolecular systems for drug delivery: Recent progress and future perspective. Adv Drug Deliv Rev 65:1215–1233. https://doi.org/10.1016/j.addr.2013.05.001
Zhang L, Li LL, Cheng LH, Chen HL (2011) Preparation and application of cyclodextrin-based molecular tube. Prog Chem 23:1936–1944
Zhang XM, Li HZ, Cao ML, Shi L, Chen CY (2015) Adsorption of basic dyes on beta-cyclodextrin functionalized poly (styrene-alt-maleic anhydride). Sep Sci Technol 50:947–957. https://doi.org/10.1080/01496395.2014.978461
Zhang LL, Man SL, Qiu HN, Liu Z, Zhang M, Ma L, Gao WY (2016) Curcumin-cyclodextrin complexes enhanced the anti-cancer effects of curcumin. Environ Toxicol Pharmacol 48:31–38. https://doi.org/10.1016/j.etap.2016.09.021
Zhao SP, Xu W (2010) Cyclodextrin-containing supramolecular hydrogels. Prog Chem 22:916–926
Zhao R, Wang Y, Li X, Sun BL, Wang C (2015) Synthesis of beta-cyclodextrin-based electrospun nanofiber membranes for highly efficient adsorption and separation of methylene Blue. ACS Appl Mater Interfaces 7:26649–26657. https://doi.org/10.1021/acsami.5b08403
Zhou JW, Ritter H (2010) Cyclodextrin functionalized polymers as drug delivery systems. Polym Chem 1:1552–1559. https://doi.org/10.1039/c0py00219d
Zhou ZJ, Cai RX, Liu NG, Zhang L, Chen HL (2007) Preparation and application of membrane with cyclodextrins. Prog Chem 19:1436–1442
Zimmer S, Grebe A, Bakke SS, Bode N, Halvorsen B, Ulas T, Skjelland M, De Nardo D, Labzin LI, Kerksiek A, Hempel C, Heneka MT, Hawxhurst V, Fitzgerald ML, Trebicka J, Bjorkhem I, Gustafsson JA, Westerterp M, Tall AR, Wright SD, Espevik T, Schultze JL, Nickenig G, Lutjohann D, Latz E (2016) Cyclodextrin promotes atherosclerosis regression via macrophage reprogramming. Sci Transl Med 8:333ra50. https://doi.org/10.1126/scitranslmed.aad6100
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Additional information
This chapter is dedicated to the memory of Professor Benito Casu (Istituto di Chimica e Biochimica G. Ronzoni, Milan, Italy).
Rights and permissions
Copyright information
© 2018 Springer International Publishing AG, part of Springer Nature
About this chapter
Cite this chapter
Crini, G., Fourmentin, S., Fenyvesi, É., Torri, G., Fourmentin, M., Morin-Crini, N. (2018). Fundamentals and Applications of Cyclodextrins. In: Fourmentin, S., Crini, G., Lichtfouse, E. (eds) Cyclodextrin Fundamentals, Reactivity and Analysis. Environmental Chemistry for a Sustainable World, vol 16. Springer, Cham. https://doi.org/10.1007/978-3-319-76159-6_1
Download citation
DOI: https://doi.org/10.1007/978-3-319-76159-6_1
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-76158-9
Online ISBN: 978-3-319-76159-6
eBook Packages: Earth and Environmental ScienceEarth and Environmental Science (R0)