Skip to main content

Late Cenozoic to Modern-Day Volcanism in the Northern Andes: A Geochronological, Petrographical, and Geochemical Review

  • Chapter
Geology and Tectonics of Northwestern South America

Part of the book series: Frontiers in Earth Sciences ((FRONTIERS))

Abstract

The Northern Andean Block is the result of complex tectonic interaction between the Farallon-Nazca, South American, and Caribbean Plates. Abundant late Cenozoic volcanism (and associated hypabyssal porphyritic plutonism), beginning in the mid- to late Miocene, is the result of subduction-related mantle-derived magmatic activity, superimposed upon a compositionally varied and structurally complex basement during the late stages of the Northern Andean orogeny. Tectonic consolidation and subduction of the segmented Nazca Plate during the late Miocene-Pliocene led to conformation of the modern-day Colombian segment of the Northern Andean Volcanic Zone. The Colombian arc segment represents the northernmost expression of subduction-related volcanism within South America’s Andean Cordillera.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

ACPB:

Amagá-Cauca-Patía

AFC:

Assimilations by fractional crystallization

AFM:

Diagram alkali-iron-magnesium

AFS:

Algeciras fault system

AOC:

Altered oceanic crust

AVZ:

Austral Volcanic Zone

BAU:

Baudó terrane

Ca:

(circa) Approximately

CAM:

Caribbean mountain terrane

CA-VA:

Cajamarca-Valdivia terrane

CC:

Central Cordillera

CET:

Colombia-Ecuador trench

CG:

Cañasgordas terrane

CS:

Carbonate-rich sediments

CV:

Cauca Valley

CVZ:

Central Volcanic Zone

DA:

Dagua terrane

E:

East

E.g.:

For example (exempli gratia)

EC:

Eastern Cordillera

ENE:

East northeast

Et al:

And others (et alia)

Fig:

Figure

Fm.:

Formation

GA:

Macizo de Garzón

GOR:

Gorgona terrane

GPa:

GigaPascal

GU-FA:

Guajira-Falcón terranes

HFS:

High-field strength

HFSE:

High-field-strength elements

HIMU:

High U/Pb mantle

HREE:

Heavy rare earth elements

HS:

Hemipelagic sediments

I.E:

In essence (id est)

K:

Cretaceous

Km:

Kilometers

LCC:

Lower continental crust

LIL:

Large-ion lithophile

LILE:

Large-ion lithophile elements

LREE:

Light rare earth elements

Ma:

Mega-annum

MMB:

Middle Magdalena Basin

MORB:

Mid-ocean-ridge basalt

MSP:

Maracaibo subplate

N:

Neogene

NAB:

Northern Andean Block

NE:

Northeast

NNE:

North northeast

NVZ:

Northern Volcanic Zone

NW:

Northwest

OIB:

Ocean island basalt

P:

Paleogene

P:

Pressure

PA:

Panamá terrane

Pa:

Pascal

PCB:

Panamá-Chocó Block

Pz:

Paleozoic

RA:

Rear arc

REE:

Rare earth element

RO:

Romeral terrane

SE:

Southeast

SJ:

San Jacinto terrane

SL:

San Lucas Block

SM:

Sierra Nevada de Santa Marta

SN:

Sinú terrane

SS:

Subducted sediments

SVZ:

South Volcanic Zone

SW:

Southwest

T:

Temperature

TAS:

Total alkali-silica

UCC:

Upper continental crust

VF:

Volcanic front

W:

West

WBZ:

Wadati-Benioff zone

WC:

Western Cordillera

WSW:

West southwest

References

  • Annen C, Blundy JD, Sparks RS (2006) The genesis of intermediate and silicic magmas in deep crustal hot zones. J Petrol 47(3):505–539

    Google Scholar 

  • Álvarez A (1983) Geología de la cordillera Central y el Occidente colombiano y petroquímica de los intrusivos granitoides Mesocenozoicos. Boletín Geológico, vol 26, p 175, Bogotá

    Google Scholar 

  • Álvarez J (1987) Mapa metalogénico de las fajas ofiolíticas de la zona occidental de Colombia. Ingeominas, Bogotá, Informe No. 2024, p 41

    Google Scholar 

  • Aspden JA, McCourt WJ (1986) Mesozoic oceanic terrane in the Central Andes of Colombia. Geology 14:415–418

    Google Scholar 

  • Aspden JA, McCourt WJ, Brook M (1987) Geometrical control of subduction-related magmatism: the Mesozoic and Cenozoic plutonic history of Western Colombia. J Geol Soc Lond 144:893–905

    Google Scholar 

  • Barragan R, Geist D, Hall M, Larson P, Kurz M (1998) Subduction controls on the compositions of lavas from the Ecuadorian Andes. Earth Planet Sci Lett 154(1–4):153–166

    Google Scholar 

  • Barret TJ, Taylor PN, Lugowski J (1987) Metalliferous sediments from DSDP leg 92: The East Pacific Rise transects. Geochim Cosmochim Acta 46:651–666

    Google Scholar 

  • Bernet M, Urueña C, Amaya S, Peña ML (2016) New thermo and geochronological constraints on the Pliocene-Pleistocene eruption history of the Paipa-Iza volcanic complex, Eastern Cordillera, Colombia. J Volcanol Geotherm Res 327:299–309. https://doi.org/10.1016/j.jvolgeores.2016.08.013

    Google Scholar 

  • Bissig T, Mantilla FL, Rodríguez A, Raley Ch, Hart C. (2012) The Vetas-California district, eastern Cordillera, Santander, Colombia: Late Miocene porphyry and epithermal mineralization hosted in Proterozoic gneisses and Late Triassic intrusions. Abstract. XVI Peruvian Geological Congress & SEG Conference. Lima, Perú

    Google Scholar 

  • Bohórquez O, Monsalve ML, Velandia F, Gil-Cruz F, Mora H (2005) Determinación del Marco Tectónico Regional para la Cadena Volcánica más Septentrional de la Cordillera Central de Colombia. Boletín de Geología, UIS, vol 27/44, p 55–79

    Google Scholar 

  • Bourdon E, Eissen JP, Gutscher MA, Monzier M, Hall M, Cotten J (2003) Magmatic response to early aseismic ridge subduction: the Ecuadorian margin case (South America). Earth Planet Sci Lett 205(3–4). https://doi.org/10.1016/S0012-821X(02)01024-5

  • Borrero C, Castillo H (2006) Vulcanitas del S-SE de Colombia: retro-arco Alcalino y su posible relacion con una ventana Astenosferica. Boletín de Geología vol 28/2, p 24–34

    Google Scholar 

  • Borrero C, Toro LM, Alvarán M, Castillo H (2009) Geochemistry and tectonic controls of the effusive activity related with the ancestral Nevado del Ruiz volcano, Colombia. Geofísica Internacional, vol 48/1, p 149–169

    Google Scholar 

  • Bryant JA, Yogodzinski GM, Hall ML, Lewicki JL, Bailey DG (2006) Geochemical constraints on the origin of volcanic rocks from the Andean Northern Volcanic Zone, Ecuador. J Petrol 47(6):1147–1175

    Google Scholar 

  • Calvache M, Cortés P, Williams S (1997) Stratigraphy and chronology of the Galeras Volcanic Complex, Colombia. J Volcanol Geotherm Res 77:5–19

    Google Scholar 

  • Calvache ML, Williams S (1997a) Geochemistry and petrology of the Galeras Volcanic Complex, Colombia. J Volcanol Geotherm Res 77:21–38

    Google Scholar 

  • Calvache ML, Williams S (1997b) Emplacement and petrological evolution of the andesitic dome of Galeras. J Volcanol Geotherm Res 77:57–59

    Google Scholar 

  • Campbell CJ (1974) Colombian Andes. In: Spencer AM (ed.) Mesozoic and Cenozoic Orogenic Belts. Special Publication of the Geological Society, London, vol 4, p 705–771

    Google Scholar 

  • Cediel F (2018) Phanerozoic orogens of Northwestern South America: cordilleran-type orogens, taphrogenic tectonics and orogenic float. Springer, Cham, pp. 3–89

    Google Scholar 

  • Cediel F, Etayo F, Cáceres C (1997) Distribución de facies sedimentarias y su marco tectónico durante el Fanerozoico en Colombia. VI Simposio Bolivariano, Exploración petrolera en las cuencas Subandinas, Cartagena

    Google Scholar 

  • Cediel F, Shaw RP, Cáceres C (2003) Tectonic assembly of the Northern Andean Block. In Bartolini C, Buffler RT, Blickwede J (eds) The Circum-Gulf of Mexico and the Caribbean: hydrocarbon habitats, basin formation, and plate tectonics.– AAPG Memoir 79, p 815–848

    Google Scholar 

  • Cediel F, Leal-Mejía H, Shaw RP, Melgarego JC, Restrepo-Pace PA (2011) Petroleum geology of Colombia: regional geology of Colombia. ANH – Colombia. 1: 220

    Google Scholar 

  • Cepeda H, Pardo N, Jaramillo J (2004) The Paipa volcano, Colombia, South America. IAVCEI meeting Poster Session. November 14–19, Pucón, Chile

    Google Scholar 

  • Cepeda H, Pardo N (2004) Vulcanismo de Paipa. Informe técnico. INGEOMINAS-Bogota. Colombia. 140 p

    Google Scholar 

  • Chiaradia M, Fontboté L, Beate B (2004) Cenozoic continental arc magmatism and associated mineralization in Ecuador. Mineral Deposita 39:204–222

    Google Scholar 

  • Correa AM, Cepeda H, Pulgarín B, Ancoches E (2000) El volcán Nevado del Huila (Colombia): rasgos generales y caracterización composicional. Geogaceta 27:51–54

    Google Scholar 

  • Cox KG, Bell JD, Pankhurst RJ (1979) The Interpretation of Igneous Rocks: London, George Allen & Unwin, p 464

    Google Scholar 

  • Dasch EJ (1981) Lead isotopic composition of metalliferous sediments from the Nazca Plate. Mem Geol Soc Am 154:199–209

    Google Scholar 

  • Dasgupta R, Hirschmann MM, Withers AC (2004) Deep global cycling of carbon constrained by the solidus of anhydrous, carbonated eclogite under upper mantle conditions. Earth Planet Sci Lett 227:73–85

    Google Scholar 

  • Davidson JP, de Silva SL (1992) Volcanic rocks from the Bolivian Altiplano: Insights into crustal structure, contamination, and magma genesis in the central Andes. Geology 20:1127–1130

    Google Scholar 

  • Defant M, Drummond MS (1990) Derivation of some modern arc magmas by melting of young subducted lithosphere. Nature 347:662–665

    Google Scholar 

  • De Paolo DJ (1981) Trace-element and isotopic effects of combined wallrock assimilation and fractional crystallization. Earth Planet Sci Lett 53:189–202

    Google Scholar 

  • de Silva S (1991) Styles of zoning in Central Andean ignimbrites-insights into magma chamber processes: In: Andean magmatism and its tectonic setting. Special paper 265, pp 217–232

    Google Scholar 

  • Droux A, Delaloye M (1996) Petrography and Geochemistry of Plio-Quaternary Calc-Alkaline volcanoes of Southwestern Colombia. J S Am Earth Sci 1–2:27–41

    Google Scholar 

  • Duque-Caro H (1990) The Choco Block in the northwestern corner of South America: Structural, tectonostratigraphic, and paleogeographic implications. J S Am Earth Sci 3:71–84

    Google Scholar 

  • Duque JF, Toro GE, Cardona A, Calvache M (2010) Geología, geocronología y geoquímica del volcán Morasurco, Pasto, Colombia. Boletín de Ciencias de la Tierra 27:25–36

    Google Scholar 

  • Estrada JJ, Viana R, González H (2001) Memoria Explicativa del Mapa Geológico de la Plancha 205 – Chinchiná. Escala 1:100.000. INGEOMINAS, p 92

    Google Scholar 

  • Etayo-Serna F, Barrero D, Lozano HQ, Espinosa A, Gonzalez H, Orrego A, Ballesteros IT, Forero,HO, Ramirez CQ, Zambrano-Ortiz F, Duque-Caro H, Vargas RH, Nuñez A, Alvarez, JA, Ropain UC, Cardozo EP, Galvis N, Sarmiento LR, Albers JP, Case JE, Singer DA, Bowen RW, Berger BR, Cox DP, Hodges CA (1986) Mapa de terrenos geológicos de Colombia. Bogotá. Publicaciones Geológicas Especiales del INGEOMINAS, vol 14/1, p 235

    Google Scholar 

  • Eggler DH (1972) Amphibole stability in H2O-undersaturated calc- alkaline melts. Earth Planet Sci Lett 15:38–44

    Google Scholar 

  • Farris DW, Jaramillo C, Bayona G, Restrepo-Moreno SA, Montes C, Cardona A, Mora A, Speakman RJ, Glascock MD, Valencia V (2011) Fracturing of the Panamanian Isthmus during initial collision with South America. Geology 39(11):1007–1010

    Google Scholar 

  • Feineman MD, Ryerson FJ, DePaolo DJ, Plank T (2007) Zoisite-aqueous fluid trace element partitioning with implications for subduction zone fluid composition. Chem Geol. https://doi.org/10.1016/j.chemgeo.2007.01.008

  • Frey FA, Gerlach DC, Hickey RL, López-Escobar L, Minizaga-Villavicencio F (1984) Petrogenesis of the Laguna del Maule volcanic complex, Chile (36°S). Contrib. Mineral Petrol 88:133–149

    Google Scholar 

  • Foden JD, Green TH (1992) Possible role of amphibole in the origin of andesite: some experimental and natural evidence. Contrib Mineral Petrol 109:479–493

    Google Scholar 

  • Garrison J, Davidson J, Reid M, Turner S (2006) Source versus differentiation controls on U-series disequilibria: Insights from Cotopaxi Volcano, Ecuador. Earth Planet Sci Lett 244:548–565

    Google Scholar 

  • Gill JB (1981) Orogenic Andesites and Plate Tectonics, vol 16. Springer, Berlin Heidelberg

    Google Scholar 

  • Gómez J, Nivia A, Montes NE, Tejada ML, Jiménez DM, Sepúlveda MJ, Mora MP (2007) Mapa Geológico de Colombia escala 1: 1.000.000. Ingeomina, Bogotá

    Google Scholar 

  • González H (2001) Memoria Explicativa del Mapa Geológico del Departamento de Antioquia. Escala 1:400.000. Medellín, Ingeomina, Bogotá, p 240

    Google Scholar 

  • Gorman P J,. Kerrick DM, Connolly JAD (2006) Modeling open system metamorphic decarbonation of subductingslabs, Geochem. Geophys. Geosyst.,7(4): 21, doi:10.1029/2005GC001125

    Google Scholar 

  • Grosse E (1926) Estudio Geológico del Terciario carbonífero de Antioquia en la parte occidental de la Cordillera Central de Colombia: Berlín, Verlag Von Dietrich Reimer, p 361

    Google Scholar 

  • Gutscher MA, Malavielle J, Lallemand S, Collot JY (1999a) Tectonic segmentation of the North Andean margin: impact of the Carnegie Ridge collision. Earth Planet Sci Lett 170(1–2):155–156

    Google Scholar 

  • Gutscher R, Malavieielle J, Lallemend S, Collot JY (1999b) Tectonic segmentation of the North Andean margin: Impact of the Carnegie ridge collision. Earth Planet Sci Lett 168:255–270

    Google Scholar 

  • Hall ML, Samaniego P, Le Pennec JL, Johnson JB (2008) Ecuadorian Andes volcanism: A review of Late Pliocene to present activity. J Volcanol Geotherm Res 176:1–6

    Google Scholar 

  • Hammersley L (2003) The Chalupas caldera. PhD Dissertation. Univ. California, Berkeley

    Google Scholar 

  • Hammouda T (2003) High-pressure melting of carbonated eclogite and experimental constraints on carbon recycling and storage in the mantle. Earth Planet Sci Lett 214:357–368

    Google Scholar 

  • Harmon RS, Barreiro BA, Moorbarth S, Hoefs J, Francis PW, Thorpe RS, Deruelle B, McHugh J, Virglino JA (1984) Regional O, Sr and Pb-isotope relationships in late Cenozoic calc-alkaline lavas of the Andean Cordillera. J Geol Soc Lond 141:803–822

    Google Scholar 

  • Hardy N (1991) Tectonic evolution of the easternmost Panama Basin. J S Am Earth Sci 4:261–270

    Google Scholar 

  • Hawkesworth CJ, Norry MJ, Roddick JC, Baker PE, Francis PW, Thorpe RS (1979) 143Nd/144Nd, 87Sr/86Sr, and incompatible trace element variations in calc-alkaline andesitic and plateau lavas from South America. Earth Planet Sci Lett 42:45–57

    Google Scholar 

  • Hickey RL, Frey FA, Gerlach DC, López-Escobar L (1986) Multiple sources for basaltic arc rocks from the southern volcanic zone of the Andes (34° – 41° S): Trace element and isotopic evidence for contributions from subducted oceanic crust, mantle, and continental crust. J Geophys Res 91(B6):5963–5983

    Google Scholar 

  • Hildreth W, Moorbath S (1988) Crustal contribution to arc magmatism in the Andes of central Chile. Contrib Mineral Petrol 98:455–489

    Google Scholar 

  • Irvine TN, Baragar WRA (1971) A guide to the chemical classification of the common volcanic rocks. Can J Earth Sci 8(5):523–548

    Google Scholar 

  • James DE (1982) A combined O, Sr, Nd, and Pb isotopic and trace element study of crustal contamination in central Andean lavas: I. Local geochemical variations. Earth Planet Sci Lett 57:47–62

    Google Scholar 

  • James DE, Brooks C, Cuyubamba A (1976) Andean Cenozoic volcanism: Magma genesis in the light of strontium isotopic composition and trace-element geochemistry. Geol Soc Amer Bull 87(p):592–600

    Google Scholar 

  • Jaramillo JM (1976) Volcanic rocks of the Río Cauca valley, Colombia S.A. Thesis Degree of Master of Arts, Rice University, Houston

    Google Scholar 

  • Kawamoto T (1996) Experimental constraints on differentiation and H2O abundance of calcalkaline magmas. Earth Planet Sci Lett 144:577–589

    Google Scholar 

  • Kay S, Mpodozis C, Ramos VA, Munizaga F (1991) Magma source variations for mid-Tertiary magmatic rocks associated with a shallowing subduction zone and a thickening crust in the Central Andes (28–33°S). In: Andean Magmatism and its Tectonic Setting, Boulder, Colorado. Harmon, R.S., Rapela, C.W., eds. Spec. Pap. Geol. Soc. Am., vol 265, p 113–137

    Google Scholar 

  • Kellogg J, Vega V (1995) Tectonic development of Panamá, Costa Rica, and the Colombian Andes: Constraints from global positioning system geodetic studies and gravity. Geological Society of America. Special Paper vol 295, pp 75–90

    Google Scholar 

  • Kennan L, Pindell J (2009) Dextral shear, terrane accretion and basin formation in the Northern Andes: Best explained by interaction with a Pacific-derived Caribbean Plate. The geology and evolution of the region between North and South America. Geological Society of London, Special Publication, p 58

    Google Scholar 

  • Kerr AC, Tarney J, Nivia A, Marriner GF, Saunders AD (1998) The structure of an oceanic plateau: evidence from obducted Cretaceous terranes in western Colombia. Tectonophysics 292:173–188

    Google Scholar 

  • Kerrick DM, Connolly JAD (2001) Metamorphic devolatilization of subducted marine sediments and the transport of volatiles into the Earth’s Interior. Nature, 411:293–296

    Google Scholar 

  • Kroonenberg S, Pichler H, Diederix H (1982) Cenozoic alkalibasaltic to ultrabasic volcanism in the uppermost magdalena valley Southern Huila department, Colombia. Geología Norandina 5:19–26

    Google Scholar 

  • Leal-Mejía H (2011) Phanerozoic Gold Metallogeny in the Colombian Andes – A tectono-magmatic approach: Ph.D. thesis, Barcelona (Catalonia), Spain, University of Barcelona, p 1000

    Google Scholar 

  • Leal-Mejia H, Shaw RP, Melgarejo JC (2018) Spatial/temporal migration of granitoid magmatisn and the phanerozoic tectono-magmatic evolution of the Colombian Andes. In: Cediel F and Shaw RP (eds). Geology and Tectonics of Northwestern South America: The Pacific-Caribbean-Andean Junction, Springer, pp 253–397

    Google Scholar 

  • LeMaitre RW, Bateman P, Dudek A, Keller J, MJ L-LB, Sabine PA, Schmid R, Sorensen H, Streckeisen A, Woolley AR, Zanettin BA (1989) Classification of Igneous Rocks and Glossary of Terms. Blackwell, Oxford

    Google Scholar 

  • Lonsdale P (2005) Creation of the Cocos and Nazca plates by fission of the Farallón plate. Tectonophysics 404(3–4):237–264

    Google Scholar 

  • López A, Ramírez S (2006) Registro del Vulcanismo Neógeno en el suroccidente antioqueño y sus implicaciones tectónicas. Undergraduate thesis. EAFIT University. 122p

    Google Scholar 

  • López A, Sierra GM, Ramírez S (2006) Vulcanismo Neógeno en el suroccidente antioqueño y sus implicaciones tectónicas. Boletín Ciencias de la Tierra 19:27–41

    Google Scholar 

  • López-Castro SM (2009) Estratigrafía, petrología y geoquímica de las rocas volcánicas del flanco occidental del volcán Puracé, alrededores de Coconuco. Master thesis on Earth Sciences. EAFIT University, p 9

    Google Scholar 

  • Mann P, Burke K (1984) Cenozoic rift formation in the northern Caribbean. Geology 12:732–736

    Google Scholar 

  • Mann P, Corrigan J (1990) Model for late Neogene deformation in Panama. Geology 18:558–562

    Google Scholar 

  • Mantilla FL, Mendoza H, Bissig T, Hart C (2011) Nuevas evidencias sobre el magmatismo Miocenico en el distrito minero de Vetas-California (Macizo de Santander, Cordillera Oriental, Colombia). Boletín de Geología vol 33/1, p 41–56

    Google Scholar 

  • Marín-Cerón MI (2007) Major, trace element and multi-isotopic systematics of SW Colombian volcanic arc, northern Andes: Contributions of slab fluid, mantle wedge and lower crust to the origin of Quaternary andesites. Doctoral thesis. Okayama University, Japan, p 133

    Google Scholar 

  • Marín-Cerón MI, Moriguti T, Makishima A, Nakamura E (2010) Slab decarbonation and CO2 recycling in the Southwestern Colombian volcanic arc. Geochim Cosmochim Acta 74:1104–1121

    Google Scholar 

  • Marriner GF, Millward D (1984) Petrochemistry of Cretaceous to recent Vulcanism in Colombia. J Geol Soc Lond 141:473–486

    Google Scholar 

  • McCourt WJ, Aspden JA, Brook M (1984) New geological and geochronological data from the Colombian Andes: continental growth by multiple accretion. J Geol Soc Lond 141:831–845

    Google Scholar 

  • Mejía EL, Velandia F, Zuluaga CA, López JA, Cramer T (2012) Análisis estructural al noreste del Volcán Nevado del Ruíz, Colombia–aporte a la exploración geotérmica. Boletín de Geología 34:27–41

    Google Scholar 

  • Mesa-García J (2015) Combia Formation: a Miocene immature volcanic arc?. Master Thesis, EAFIT Univeristy, Medellín, Colombia. p 249

    Google Scholar 

  • Molina JF, Poli S (2000) Carbonate stability and fluid composition in subducted oceanic crust: an experimental study on H2O-CO2-bearing basalts. Earth Planet Sci Lett 176:295–231

    Google Scholar 

  • Monsalve ML, Arcila M (2015) Firma Adakítica en los productos recientes de los volcanes Nevado del Huila y Puracé, Colombia. Boletín Geológico 43:23–40

    Google Scholar 

  • Montes C, Cardona A, McFadden R, Morón SE, Silva CA, Restrepo-Moreno S, Ramírez DA, Hoyos N, Wilson J, Farris D, Bayona GA, Jaramillo CA, Valencia V, Bryan J, Flores JA (2012) Evidence for middle Eocene and younger land emergence in central Panama: Implications for Isthmus closure. Science 124(5–6):780–799

    Google Scholar 

  • Monzier M, Robin C, Hall ML, Cotten J, Mothes P, Eissen JP, Samaniego P (1997) Les adakites d'Equateur : Modèle préliminaire. Comptes Rendus Acad. Sci Paris 324:545–552

    Google Scholar 

  • Morlidge M, Pawley A, Giles D (2006) Double carbonates breakdown reactions at high pressures: an experimental study in the system CaO-MgO-FeO-MnO-CO2. Contrib Mineral Petrol 152:365–373

    Google Scholar 

  • Müntener O, Kelemen PB, Grove TL (2001) The role of H2O during crystallisation of primitive arc magmas under upper-most mantle conditions and genesis of igneous pyroxenites: an experimental study. Contrib Mineral Petrol 141:643–658

    Google Scholar 

  • Nakamura E, Campbell IH, Sun SS (1985) The influence of subduction processes on the geochemistry of Japanese alkaline basalt. Nature 316:55–58

    Google Scholar 

  • Navarro S, Pulgarín B, Monsalve ML, Cortés GP, Calvache ML, Pardo N, Murcia H (2009) Geología e historia eruptiva del complejo volcánico Doña Juana (CVDJ) Nariño. Boletín de geología 31(2)

    Google Scholar 

  • Ordoñez O (2002) Caracterizacao isotopica Rb-Sr E Sm-Nd dos principais eventos magmáticos nos Andes Colombianos. Doctoral thesis. Brazilia University, p 165

    Google Scholar 

  • Ogasawara Y, Ohta M, Fuksawa K, Katayama I, Maruyama S (2000) Diamond-bearing and diamond-free metacarbonate rocks from Kumdy-Kol in the Kokchetav Massif, northern Kazakhstan. The Island Arc, 9:400–416

    Google Scholar 

  • Pardo N, Cepeda H, Jaramillo J (2005) The Paipa volcano, Eastern Cordillera of Colombia, South America: volcanic stratigraphy. Earth Sci Res J 9:3–18

    Google Scholar 

  • Pardo-Casas F, Molnar P (1987) Relative motion of the Nazca (Farallón) and South American plates since Late Cretaceous time. Tectonics 6(3):223–248

    Google Scholar 

  • París G, Marín W, Sauret B, Vergara H, Bles J L (1992) Neotectónica. En: Microzonificación Sismogeotécnica de Popayán. CEE-INGEOMINAS. INGEOMINAS 2, pp 28–49

    Google Scholar 

  • Patiño LC, Carr M, Feigenson M (2000) Local and regional variations in Central American arc lavas controlled by variations in subducted sediment input. Contrib Mineral Petrol 138:265–283

    Google Scholar 

  • Pedersen R, Furnes H (2001) Nd- and Pb-isotopic variations through the upper oceanic crust in DSDP/ODP Hole 504B, Costa Rica Rift. Earth Planet Sci Lett 189:221–235

    Google Scholar 

  • Pedraza-García P, Vargas CA, Monsalve H (2007) Geometric Model of the Nazca Plate Subduction in Southwest Colombia. Earth Sci Res J 11(2):117–130

    Google Scholar 

  • Pérez AM, Marín-Cerón MI, Bernet M, Sierra G, Moreno N (2013) Resultados preliminares de AFT en la Formación Amagá, Pozos el Cinco-1B y Venecia-1. In: Colombia. Event: XIV Congreso Colombiano de Geología Libro: XIV Congreso Colombiano de Geología. Resúmenes

    Google Scholar 

  • Pichavant M, Martel C, Bourdier JL, Scaillet B (2002). Physical conditions, structure, and dynamics of a zoned magma chamber: Mount Pelée (Martinique, Lesser Antilles Arc). J Geophys Res 107, article number 2093

    Google Scholar 

  • Piedrahita VA, Bernet M, Chadima M, Sierra GS, Marín-Cerón MI, Toro GE (2017) Detrital zircon fission-track thermochronology and magnetic fabric of the Amagá Formation (Colombia): Intracontinental deformation and exhumation events in the northwestern Andes. Sediment Geol 356:26–42. https://doi.org/10.1016/j.sedgeo.2017.05.003

    Google Scholar 

  • Pindell JL, Higgs R, Dewey JF (1998) Cenozoic palinspatic reconstruction, paleogeographic evolution and hydrocarbon setting of the northern margin of the northern margin of South America. In: Pindell JL, Drake CL (eds) Paleogeographic evolution and non-glacial eustasy, northern South America: Society of economic and petroleum mineralogists special publications, 58:45–85

    Google Scholar 

  • Plank T, Balzer V, Carr M (2004) Nicaraguan volcanoes record paleoceanographic changes accompanying closure of the Panama gateway. Geology 30(12):1087–1090

    Google Scholar 

  • Ramírez DA, López A, Sierra GM, Toro GE (2006) Edad y provenincia de las rocas volcánico sedimentarias de la Formación Combia en el suroccidente Antioqueño- Colombia. Boletin Ciencias de la Tierra. 19:9–26

    Google Scholar 

  • Ramos V, Aleman A (2000) Tectonic evolution of the Andes U. Cordani, E.J. Milani, A. Thomaz Filho, M.C. Campos Neto (Eds.), Tectonic Evolution of South America, p. 635–685 (31st Int. Geol. Congr., Rio de Janeiro)

    Google Scholar 

  • Restrepo-Moreno SA, Foster DA, Stockli DF, Parra-Sánchez LN (2009) Long-term erosion and exhumation of the ‘Altiplano Antioqueño’, Northern Andes (Colombia) from apatite (U-Th)/He thermochronology. Earth Planet Sci Lett 278:1–12

    Google Scholar 

  • Restrepo-Moreno SA, Cardona A, Jaramillo C, Bayona G, Montes C, Farris DW (2010) Constraining Cenozoic uplift/exhumation of the Panamá-Chocó Block by apatite and zircon low-temperature thermochronology: insights on the onset of collision and the morphotectonic history of the region. Abstract. GSA Denver Annual Meeting. Geol Soc Am Abstr Programs 42(5):521

    Google Scholar 

  • Restrepo JJ, Toussaint JF, González H, (1981) Edades MioPliocenas del magmatismo asociado a la Formación Combia. Departamentos de Antioquia y Caldas, Colombia. Geología Norandina. 3: 2126

    Google Scholar 

  • Restrepo JJ, Toussaint JF (1988) Terranes and continental accretion in the Colombian Andes. Episodes 11(3):189–193

    Google Scholar 

  • Restrepo J, Toussaint J (1990) Cenozoic arc magmatism of northwestern Colombia: Geological Society of America Special paper, vol 41, pp 205–212

    Google Scholar 

  • Rios AM, Sierra MI (2004) La Formación Combia: Registro de la relación entre el volcanismo Neógeno y la sedimentación fluvial, sección Guineales – Bolombolo, suroeste antioqueño. Undergraduate thesis. EAFIT University. 122 pp.

    Google Scholar 

  • Rovida A, Tibaldi A (2005) Propagation of strike-slip faults across Holocene volcano-sedimentary deposits, Pasto, Colombia. J Struct Geol 27:1838–1855

    Google Scholar 

  • Rodríguez G, Arango MI, Bermúdez JG (2012) Batolito de Sabanalarga, plutonismo de arco en la zona de sutura entre las cortezas oceánica y continental de los Andes del Norte. Boletín Ciencias de la Tierra 32:81–98

    Google Scholar 

  • Rodriguez-Vargas KE, Mallmann G, Conceicao RV, Kawashita K, Weber MBI (2005) Mantle diversity beneath the Colombian Andes, Northern Volcanic Zone: Constraints from Sr and Nd isotopes. Lithos 82:471–484

    Google Scholar 

  • Russo RM, Okal EA, Rowley K (1992) Historical seismicity of the southeastern Caribbean and tectonic implications. Pageoph 139(1):87–120

    Google Scholar 

  • Ryan JG, Langmuir CH (1987) The systematics of lithium abundances in young volcanic rocks. Geochim Cosmochim Acta 51:1727–1741

    Google Scholar 

  • Saenz EA (2003) Fission track thermochronology and denudational response to tectonics in the north of the Colombian Central Cordillera. Master thesis. Shimane University. 131 pp

    Google Scholar 

  • Sakuyama M, Nesbitt RW (1986) Geochemistry of the quaternary volcanic rocks of the northeast Japan arc. J Volcanol Geotherm Res 29(1–4):413–450

    Google Scholar 

  • Shibata T, Nakamura E (1997) Across-arc variations of isotope and trace element compositions from Quaternary basaltic volcanic rocks in northeastern Japan: Implications for interaction between subducted oceanic slab and mantle wedge. J Geophys Res 102(B4):8051–8064

    Google Scholar 

  • Sierra G (1994) Structural and sedimentary evolution of the Irra Basin, northern Colombian Andes. Master thesis, Department of Geological Science, State University of New York, Binghamton, NY. 102 pp.

    Google Scholar 

  • Sierra GM, MacDonald W, Estrada JJ (1995) Young rotations inferred from paleomagnetic evidence in late Tertiary strata: slip reversals along the Romeral Strike –Slip fault zone, Northern Andes. In: Estados Unidos Eos, Transactions, American Geophysical Union

    Google Scholar 

  • Sierra GM, Marín MI (2011) Amagá, Cauca and Patía Basins at: Petroleum Geology of Colombia, vol 2, ANH-EAFIT, p 104

    Google Scholar 

  • Stern CR (2004) Active Andean volcanism: its geologic and tectonic setting. Andean Geol 31(2):161–206

    Google Scholar 

  • Sudo A, Tatsumi Y (1990) Phlogopite and K-amphibole in the upper mantle: Implication for magma genesis in subduction zones. Geophys Res Lett 17(1):29–32

    Google Scholar 

  • Sun SS, McDonough W (1989) Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes. In: Saunders AD, Norry MJ (eds.) Magmatism in ocean basins, Geol. Soc. Spec. Pub., vol 42, pp 313–345

    Google Scholar 

  • Taboada A, Rivera LA, Fuenzalida A, Cisternas A, Philip H, Bijwaard H, Olaya J, Rivera C (2000) Geodynamics of the northern Andes: Subductions and intracontinental deformation (Colombia). Tectonics 19(5):787–813

    Google Scholar 

  • Tassinari CCG, Díaz F, Buena J (2008) Age and sources of gold mineralization in the Marmato mining district, NW Colombia: A Miocene – Pliocene epizonal gold deposit. Ore Geol Rev 33:505–518

    Google Scholar 

  • Tatsumi Y (2003) Some constraints on arc magma genesis. In: Eiler J (ed) Inside the Subduction Factory. American Geophysical Union Monographs, 138, pp 277–292

    Google Scholar 

  • Tatsumi Y (2005) The subduction factory: how it operates in the evolving earth. GSA Today 15(7):4–10

    Google Scholar 

  • Thorpe RS, Francis PW (1979) Variations in Andean andesite composition and their petrogenetic significance. Tectonophysics Bd. 57 pp 53–70 Amsterdam

    Google Scholar 

  • Thorpe RS, Francis PW, Hammill M, Baker MCW (1982).The Andes. Andesites. Ed Thorpe, R.S. 187–205

    Google Scholar 

  • Thorpe RS (1984) The tectonic setting of active Andean volcanism. In: Andean magmatism: Chemical and Isotopic Constraints (Harmon, R.S.; Barreiro, B.A.; editors). Shiva Geological Series, Shiva Publications, Nantwich, U.K, pp 4–8

    Google Scholar 

  • Tilton GR, Barreiro BA (1980) Origin of lead in Andean calc-alkaline lavas, southern Peru. Science 210:1245–1247

    Google Scholar 

  • Toro G, Restrepo JJ, Poupeau G, Saenz E, Azdimousa A (1999) Datación por trazas de fisión de circones rosados asociados a la secuencia volcano – sedimentaria de Irra (Caldas). Boletín de Ciencias de la Tierra 13:28–34

    Google Scholar 

  • Toro LM, Borrero-Peña CA, Ayala LF (2010) Petrografía y geoquímica de las rocas ancestrales del volcán Nevado del Ruiz. Boletín de Geología 32(1):95–105

    Google Scholar 

  • Torres-Hernández MP (2010) Petrografía, geocronología y geoquímica de las ignimbritas de la formación Popayán, en el contexto del vulcanismo del suroccidente de Colombia, pp 35–132

    Google Scholar 

  • Toussaint JF, Restrepo JJ (1982) Magmatic evolution of the northwestern Andes of Colombia. Earth Sci Rev 18:205–213

    Google Scholar 

  • Trenkamp R, Kellogg JN, Freymueller JT, Mora HP (2002) Wide plate margin deformation, southern Central America and northwestern South America, CASA GPS observations. J S Am Earth Sci 15:157–171

    Google Scholar 

  • Uribe-Mogollón CA (2013) Hydrothermal evolution of the Titiribí mining district. Undergraduate thesis. EAFIT University. 127 pp

    Google Scholar 

  • Ujueta G (1991) Tectónica y actividad ígnea en la Cordillera Oriental de Colombia (Sector Girardot-Cúcuta). En Simposio sobre Magmatismo Andino y su Marco Tectónico, memorias Tomo I, 151–192

    Google Scholar 

  • Van der Hilst R, Mann P (1994) Tectonic implications of tomographic images of subducted lithospher beneath northwestern South America. Geology 22(5):451–454

    Google Scholar 

  • van Keken PE, Kiefer B, Peacock SM (2002) High-resolution models of subduction zones: Implications for mineral dehydration reactions and the transport of water into the deep mantle, Geochem Geophys Geosyst, 3(10):1056. https://doi.org/10.1029/2001GC000256

  • Velandia F, Acosta J, Terraza R, Villegas H (2005) The current tectonic motion of the Northern Andes along the Algeciras Fault System in SW Colombia. Tectonophysics 399:313–329

    Google Scholar 

  • Villagómez D (2010) Thermochronology, geochronology and geochemistry of the Western and Central cordilleras and Sierra Nevada de Santa Marta, Colombia: The tectonic evolution of NW South America. Doctoral thesis. University of Geneve. 166 pp

    Google Scholar 

  • Walker GPL, Wilson CJN, Froggat PC (1991) An ignimbrite veneer deposits; the trail marker of a pyroclastic flow. J Volcanol Geotherm Res 9:409–421

    Google Scholar 

  • White WM, Dupre B, Vidal P (1985) Isotope and trace element geochemistry of sediments from the Barbados Ridge — Demerara Plain region, Atla

    Google Scholar 

  • Wilder DT (2003) Relative motion history of the Pacific-Nazca (Farallon) plates since 30 million years ago. Graduate Thesis. University of South Florida. 106 pp.

    Google Scholar 

  • Winter John D (2001) An Introduction to Igneous and Metamorphic Petrology. Prentice Hall, Upper Saddle River. ISBN 0-13-240342-0

    Google Scholar 

  • Weber MBI, Tarney J, Kempton PD, Kent RW (2002) Crustal make-up of the northern Andes: evidence based on deep crustal xenolith suites, Mercaderes, SW Colombia. Tectonophysics 345:49–82

    Google Scholar 

  • Wood DA, Joron JL, Treuil M (1979) A re-appraisal of use of trace elements to classify and discriminate between magma series erupted in different tectonic setting. Earth Planet Sci Lett 45:326–336. 122

    Google Scholar 

  • Wörner G, Davidson J, Moorbath S, Turner TL, McMillan N, Nye C, López-Escobar L, Moreno H (1988) The Nevados de Payachata Volcanic Region 18°S/69°W, Northern Chile. I. Geological, geochemical and isotopic observations. Bull Volcanol 30:287–303

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. I. Marín-Cerón .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Cite this chapter

Marín-Cerón, M.I., Leal-Mejía, H., Bernet, M., Mesa-García, J. (2019). Late Cenozoic to Modern-Day Volcanism in the Northern Andes: A Geochronological, Petrographical, and Geochemical Review. In: Cediel, F., Shaw, R.P. (eds) Geology and Tectonics of Northwestern South America. Frontiers in Earth Sciences. Springer, Cham. https://doi.org/10.1007/978-3-319-76132-9_8

Download citation

Publish with us

Policies and ethics