Skip to main content

The Fractal Dimension of Music: Geography, Popularity and Sentiment Analysis

  • Conference paper
  • First Online:
Smart Objects and Technologies for Social Good (GOODTECHS 2017)

Abstract

Nowadays there is a growing standardization of musical contents. Our finding comes out from a cross-service multi-level dataset analysis where we study how geography affects the music production. The investigation presented in this paper highlights the existence of a “fractal” musical structure that relates the technical characteristics of the music produced at regional, national and world level. Moreover, a similar structure emerges also when we analyze the musicians’ popularity and the polarity of their songs defined as the mood that they are able to convey. Furthermore, the clusters identified are markedly distinct one from another with respect to popularity and sentiment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Spotify. https://www.spotify.com/. Accessed 28 July 2017

  2. Toscana100band contest. http://toscana100band.it/. Accessed 28 July 2017

  3. Spotify Web API. https://developer.spotify.com/web-api/. Accessed 28 July 2017

  4. Genius. https://genius.com/. Accessed 28 July 2017

  5. SoundCloud API. https://developers.soundcloud.com/docs/api/guide. Accessed 28 July 2017

  6. Google Form service. https://www.google.com/forms/about/. Accessed 28 July 2017

  7. Spotify Audio Features Object. https://developer.spotify.com/web-api/get-several-audio-features/. Accessed 28 July 2017

  8. AllMusic. http://www.allmusic.com/genres. Accessed 28 July 2017

  9. Goslate. http://pythonhosted.org/goslate/. Accessed 28 July 2017

  10. List of popular music genres, (n.d.). Wikipedia. http://en.wikipedia.org/wiki/Psychology. Accessed 28 July 2017

  11. Clarke, F., Ekeland, I.: Nonlinear oscillations and boundary-value problems for Hamiltonian systems. Arch. Rat. Mech. Anal. 78, 315–333 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  12. Clarke, F., Ekeland, I.: Solutions périodiques, du période donnée, des équations hamiltoniennes. Note CRAS Paris 287, 1013–1015 (1978)

    MATH  Google Scholar 

  13. Michalek, R., Tarantello, G.: Subharmonic solutions with prescribed minimal period for nonautonomous Hamiltonian systems. J. Differ. Equ. 72, 28–55 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  14. Tarantello, G.: Subharmonic solutions for Hamiltonian systems via a \(Z\!\!Z_p\) pseudoindex theory. Annali di Matematica Pura (to appear)

    Google Scholar 

  15. Rabinowitz, P.: On subharmonic solutions of a Hamiltonian system. Commun. Pure Appl. Math. 33, 609–633 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  16. Guidotti, R., Rossetti, G., Pedreschi, D.: Audio ergo sum. In: Milazzo, P., Varró, D., Wimmer, M. (eds.) STAF 2016. LNCS, vol. 9946, pp. 51–66. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-50230-4_5

    Chapter  Google Scholar 

  17. Rawlings, D., Ciancarelli, V.: Music preference and the five-factor model of the NEO personality inventory. Psychol. Music 25(2), 120–132 (1997)

    Article  Google Scholar 

  18. Rentfrow, P.J., Gosling, S.D.: The do re mi’s of everyday life: the structure and personality correlates of music preferences. J. Pers. Soc. Psychol. 84(6), 1236 (2003)

    Article  Google Scholar 

  19. Bu, J., Tan, S., Chen, C., Wang, C., Wu, H., Zhang, L., He, X.: Music recommendation by unified hypergraph: combining social media information and music content. In: Proceedings of the 18th ACM International Conference on Multimedia, pp. 391–400. ACM (2010)

    Google Scholar 

  20. Bischoff, K.: We love rock‘n’roll: analyzing and predicting friendship links in last. fm. In: Proceedings of the 4th Annual ACM Web Science Conference, pp. 47–56. ACM (2012)

    Google Scholar 

  21. Pennacchioli, D., Rossetti, G., Pappalardo, L., Pedreschi, D., Giannotti, F., Coscia, M.: The three dimensions of social prominence. In: Jatowt, A., Lim, E.-P., Ding, Y., Miura, A., Tezuka, T., Dias, G., Tanaka, K., Flanagin, A., Dai, B.T. (eds.) SocInfo 2013. LNCS, vol. 8238, pp. 319–332. Springer, Cham (2013). https://doi.org/10.1007/978-3-319-03260-3_28

    Chapter  Google Scholar 

  22. Putzke, J., Fischbach, K., Schoder, D., Gloor, P.A.: Cross-cultural gender differences in the adoption and usage of social media platforms - an exploratory study of Last.FM. Comput. Netw. 75, 519–530 (2014). http://dx.doi.org/10.1016/j.comnet.2014.08.027

    Article  Google Scholar 

  23. Park, M., Weber, I., Naaman, M., Vieweg, S.: Understanding musical diversity via online social media. In: Ninth International AAAI Conference on Web and Social Media (2015)

    Google Scholar 

  24. Zheleva, E., Guiver, J., Mendes Rodrigues, E., Milić-Frayling, N.: Statistical models of music-listening sessions in social media. In: Proceedings of the 19th International Conference on World wide web, pp. 1019–1028. ACM (2010)

    Google Scholar 

  25. Li, T., Ogihara, M., Peng, W., Shao, B., Zhu, S.: Music clustering with features from different information sources. IEEE Trans. Multimed. 11(3), 477–485 (2009)

    Article  Google Scholar 

  26. Peng, W., Li, T., Ogihara, M.: Music clustering with constraints. In: ISMIR, pp. 27–32 (2007)

    Google Scholar 

  27. González-Pardo, A., Granados, A., Camacho, D., de Borja Rodríguez, F.: Influence of music representation on compression-based clustering. In: 2010 IEEE Congress on Evolutionary Computation (CEC), pp. 1–8. IEEE (2010)

    Google Scholar 

  28. Schmid, H.: Improvements in part-of-speech tagging with an application to German. In: Proceedings of the ACL SIGDAT-workshop. Citeseer (1995)

    Google Scholar 

  29. Schmid, H.: Part-of-speech tagging with neural networks. In: Proceedings of the 15th Conference on Computational Linguistics, vol. 1, pp. 172–176. Association for Computational Linguistics (1994)

    Google Scholar 

  30. Tan, P.-N., Steinbach, M., Kumar, V., et al.: Introduction to Data Mining, vol. 1. Pearson Addison Wesley, Boston (2006)

    Google Scholar 

  31. Pollacci, L., Guidotti, R., Rossetti, G.: Are we playing like Music-Stars? Placing emerging artists on the Italian music scene (2016)

    Google Scholar 

  32. Bradley, M.M., Lang, P.J.: Affective norms for English words (ANEW): instruction manual and affective ratings. Citeseer, Technical report (1999)

    Google Scholar 

  33. Lang, P.J.: Behavioral treatment and bio-behavioral assessment: computer applications (1980)

    Google Scholar 

  34. Dodds, P.S., Danforth, C.M.: Measuring the happiness of large-scale written expression: songs, blogs, and presidents. J. Happiness Stud. 11(4), 441–456 (2010)

    Article  Google Scholar 

  35. Verhulst, P.F.: Recherches mathématiques sur la loi d’accroissement de la population. Nouveaux mémoires de l’académie royale des sciences et belles-lettres de Bruxelles 18, 14–54 (1845)

    Google Scholar 

Download references

Acknowledgment

This work is partially supported by the European Project SoBigData: Social Mining & Big Data Ecosystem, http://www.sobigdata.eu. This work is partially supported by the European Communitys H2020 Program under the funding scheme “INFRAIA-1-2014-2015: Research Infrastructures” grant agreement, http://www.sobigdata.eu, GS501100001809, 654024 “SoBigData: Social Mining & Big Data Ecosystem”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Laura Pollacci .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Pollacci, L., Guidotti, R., Rossetti, G., Giannotti, F., Pedreschi, D. (2018). The Fractal Dimension of Music: Geography, Popularity and Sentiment Analysis. In: Guidi, B., Ricci, L., Calafate, C., Gaggi, O., Marquez-Barja, J. (eds) Smart Objects and Technologies for Social Good. GOODTECHS 2017. Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering, vol 233. Springer, Cham. https://doi.org/10.1007/978-3-319-76111-4_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-76111-4_19

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-76110-7

  • Online ISBN: 978-3-319-76111-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics