Photovoltaics and Nanotechnology as Alternative Energy

  • Mallika Dasari
  • Rajesh P. Balaraman
  • Punit Kohli
Chapter
Part of the Environmental Chemistry for a Sustainable World book series (ECSW, volume 14)

Abstract

The combustion of conventional energy sources such as fossil fuels is linked to global climate change. The extraction, transportation, and supply of fuels based on fossil are also associated to local and regional geo-political and economic instability, and concerns over socio-economic sustainability in various parts of the world. Therefore, there is a strong push to enhance use of renewable energy without impacting economic growth. Further, it is becoming increasingly more important to utilize and incorporate renewable energy to meet ever increase world power consumption. The use of photovoltaics as a renewable solar energy has gained greater attention since 1990s. According to International Energy Agency (IEA), solar photovoltaics are expected to become the world largest producer of energy by contributing >15% to the global demand by 2050. Although more extensive reviews are available in the literature, in this mini-review we discuss various available alternative energy sources, and provide history, development, and characterization of photovoltaic devices (including first-, second- and third-generation photovoltaic devices with different chalcogenide materials). Emphasis is given to recent developments in the area of photovoltaic devices including Forster resonance energy transfer (FRET) and perovskite-based photovoltaics. The wide applications of photovoltaics in residential (>200 GW), construction (BIPV module), and space industry have also been reviewed in this article.

Keywords

Solar energy Photovoltaics Perovskites I-V curve 

Notes

Acknowledgement

We would like to acknowledge National Science Foundation (CHE 0748676), National Institutes of Health (GM 106364), the Office of Vice-Chancellor of Research, and Office of Sponsored Projects Administration (OSPA) at the Southern Illinois University at Carbondale (SIUC) were acknowledged for partial financial support of this article.

References

  1. Aberle AG (2000) Surface passivation of crystalline silicon solar cells: a review. Prog Photovolt Res Appl 8(5):473–487.  https://doi.org/10.1002/1099-159X(200009/10)8:5<473::AID-PIP337>3.0.CO;2-D CrossRefGoogle Scholar
  2. Adams RM, McCarl B, Dudek DJ, Glyer JD (1988) Implications of global climate change for Western agriculture. West J Agric Econ 13(02):348–356Google Scholar
  3. Agathokleous RA, Kalogirou SA (2016) Double skin facades (DSF) and building integrated photovoltaics (BIPV): a review of configurations and heat transfer characteristics. Renew Energy 89:743–756.  https://doi.org/10.1016/j.renene.2015.12.043 CrossRefGoogle Scholar
  4. Ahn N, Son D-Y, Jang I-H, Kang SM, Choi M, Park N-G (2015) Highly reproducible perovskite solar cells with average efficiency of 18.3% and best efficiency of 19.7% fabricated via Lewis base adduct of lead(II) Iodide. J Am Chem Soc 137(27):8696–8699.  https://doi.org/10.1021/jacs.5b04930 CrossRefGoogle Scholar
  5. Ameta SC, Ameta R (2015) Solar energy conversion and storage: photochemical modes. CRC Press, Boca RatonGoogle Scholar
  6. Antonanzas J, Osorio N, Escobar R, Urraca R, Martinez-de-Pison FJ, Antonanzas-Torres F (2016) Review of photovoltaic power forecasting. Sol Energy 136:78–111.  https://doi.org/10.1016/j.solener.2016.06.069 CrossRefGoogle Scholar
  7. Arjona-Esteban A, Lenze MR, Meerholz K, Würthner F (2017) Donor–acceptor dyes for organic photovoltaics. In: Leo K (ed) Elementary processes in organic photovoltaics. Springer, Cham, pp 193–214.  https://doi.org/10.1007/978-3-319-28338-8_8 CrossRefGoogle Scholar
  8. Arora N, Orlandi S, Dar MI, Aghazada S, Jacopin G, Cavazzini M, Mosconi E, Gratia P, De Angelis F, Pozzi G, Graetzel M, Nazeeruddin MK (2016) High open-circuit voltage: fabrication of formamidinium lead bromide perovskite solar cells using fluorene–dithiophene derivatives as hole-transporting materials. ACS Energy Lett 1(1):107–112.  https://doi.org/10.1021/acsenergylett.6b00077 CrossRefGoogle Scholar
  9. Bach U, Lupo D, Comte P, Moser JE, Weissortel F, Salbeck J, Spreitzer H, Gratzel M (1998) Solid-state dye-sensitized mesoporous TiO2 solar cells with high photon-to-electron conversion efficiencies. Nature 395(6702):583–585Google Scholar
  10. Baikie T, Fang Y, Kadro JM, Schreyer M, Wei F, Mhaisalkar SG, Graetzel M, White TJ (2013) Synthesis and crystal chemistry of the hybrid perovskite (CH3NH3)PbI3 for solid-state sensitised solar cell applications. J Mater Chem A 1(18):5628–5641.  https://doi.org/10.1039/C3TA10518K CrossRefGoogle Scholar
  11. Bailey SG, Flood DJ (1998) Space photovoltaics. Prog Photovolt Res Appl 6(1):1–14.  https://doi.org/10.1002/(SICI)1099-159X(199801/02)6:1<1::AID-PIP204>3.0.CO;2-X CrossRefGoogle Scholar
  12. Barbier E (2002) Geothermal energy technology and current status: an overview. Renew Sust Energ Rev 6(1–2):3–65.  https://doi.org/10.1016/S1364-0321(02)00002-3 CrossRefGoogle Scholar
  13. Benemann J, Chehab O, Schaar-Gabriel E (2001) Building-integrated PV modules. Sol Energy Mater Sol Cells 67(1–4):345–354.  https://doi.org/10.1016/S0927-0248(00)00302-0 CrossRefGoogle Scholar
  14. Blakers AW, Wang A, Milne AM, Zhao J, Green MA (1989) 22.8% efficient silicon solar cell. Appl Phys Lett 55(13):1363–1365.  https://doi.org/10.1063/1.101596 CrossRefGoogle Scholar
  15. Blom PWM, Mihailetchi VD, Koster LJA, Markov DE (2007) Device physics of polymer:fullerene bulk heterojunction solar cells. Adv Mater 19(12):1551–1566.  https://doi.org/10.1002/adma.200601093 CrossRefGoogle Scholar
  16. Brabec CJ, Sariciftci NS, Hummelen JC (2001) Plastic solar cells. Adv Funct Mater 11(1):15–26.  https://doi.org/10.1002/1616-3028(200102)11:1<15::AID-ADFM15>3.0.CO;2-A CrossRefGoogle Scholar
  17. Branker K, Pathak MJM, Pearce JM (2011) A review of solar photovoltaic levelized cost of electricity. Renew Sust Energ Rev 15(9):4470–4482.  https://doi.org/10.1016/j.rser.2011.07.104 CrossRefGoogle Scholar
  18. Brédas J-L, Norton JE, Cornil J, Coropceanu V (2009) Molecular understanding of organic solar cells: the challenges. Acc Chem Res 42(11):1691–1699.  https://doi.org/10.1021/ar900099h CrossRefGoogle Scholar
  19. Britt J, Ferekides C (1993) Thin-film CdS/CdTe solar cell with 15.8% efficiency. Appl Phys Lett 62(22):2851–2852.  https://doi.org/10.1063/1.109629 CrossRefGoogle Scholar
  20. Brown GF, Wu J (2009) Third generation photovoltaics. Laser Photonics Rev 3(4):394–405.  https://doi.org/10.1002/lpor.200810039 CrossRefGoogle Scholar
  21. Calizo I, Balandin AA, Bao W, Miao F, Lau CN (2007) Temperature dependence of the Raman spectra of graphene and graphene multilayers. Nano Lett 7(9):2645–2649.  https://doi.org/10.1021/nl071033g CrossRefGoogle Scholar
  22. Cao DH, Stoumpos CC, Farha OK, Hupp JT, Kanatzidis MG (2015) 2D homologous perovskites as light-absorbing materials for solar cell applications. J Am Chem Soc 137(24):7843–7850Google Scholar
  23. Carlson DE, Wronski CR (1976) Amorphous silicon solar cell. Appl Phys Lett 28(11):671–673.  https://doi.org/10.1063/1.88617 CrossRefGoogle Scholar
  24. Carr JA, Chaudhary S (2013) The identification, characterization and mitigation of defect states in organic photovoltaic devices: a review and outlook. Energy Environ Sci 6(12):3414–3438.  https://doi.org/10.1039/C3EE41860J CrossRefGoogle Scholar
  25. Chapin DM, Fuller CS, Pearson GL (1954) A new silicon p-n junction photocell for converting solar radiation into electrical power. J Appl Phys 25(5):676–677.  https://doi.org/10.1063/1.1721711 CrossRefGoogle Scholar
  26. Chen N, He Y, Su Y, Li X, Huang Q, Wang H, Zhang X, Tai R, Fan C (2012) The cytotoxicity of cadmium-based quantum dots. Biomaterials 33(5):1238–1244.  https://doi.org/10.1016/j.biomaterials.2011.10.070 Google Scholar
  27. Chow J, Kopp RJ, Portney PR (2003) Energy resources and global development. Science 302(5650):1528–1531.  https://doi.org/10.1126/science.1091939 CrossRefGoogle Scholar
  28. Clauser JF, Horne MA, Shimony A, Holt RA (1969) Proposed experiment to test local hidden-variable theories. Phys Rev Lett 23(15):880–884Google Scholar
  29. Cohen JE (2003) Human population: the next half century. Science 302(5648):1172–1175.  https://doi.org/10.1126/science.1088665 CrossRefGoogle Scholar
  30. Collavini S, Völker SF, Delgado JL (2015) Understanding the outstanding power conversion efficiency of perovskite-based solar cells. Angew Chem Int Ed 54(34):9757–9759.  https://doi.org/10.1002/anie.201505321 CrossRefGoogle Scholar
  31. Conibeer G (2007) Third-generation photovoltaics. Mater Today 10(11):42–50.  https://doi.org/10.1016/S1369-7021(07)70278-X Google Scholar
  32. Conibeer G, Green M, Corkish R, Cho Y, Cho E-C, Jiang C-W, Fangsuwannarak T, Pink E, Huang Y, Puzzer T, Trupke T, Richards B, Shalav A, Lin K-l (2006) Silicon nanostructures for third generation photovoltaic solar cells. Thin Solid Films 511–512:654–662.  https://doi.org/10.1016/j.tsf.2005.12.119 Google Scholar
  33. Cost L (2014) Levelized avoided cost of new generation resources in the annual energy outlook 2014. US Energy Information AdministrationGoogle Scholar
  34. Cox PM, Betts RA, Jones CD, Spall SA, Totterdell IJ (2000) Acceleration of global warming due to carbon-cycle feedbacks in a coupled climate model. Nature 408(6809):184–187Google Scholar
  35. Datas A, Martí A (2017) Thermophotovoltaic energy in space applications: review and future potential. Sol Energy Mater Sol Cells 161:285–296.  https://doi.org/10.1016/j.solmat.2016.12.007 Google Scholar
  36. Demir H, Mobedi M, Ülkü S (2008) A review on adsorption heat pump: problems and solutions. Renew Sust Energ Rev 12(9):2381–2403.  https://doi.org/10.1016/j.rser.2007.06.005 Google Scholar
  37. Dresselhaus MS, Thomas IL (2001) Alternative energy technologies. Nature 414(6861):332–337.  https://doi.org/10.1038/35104599 CrossRefGoogle Scholar
  38. Du Z, Li H, Gu T (2007) A state of the art review on microbial fuel cells: a promising technology for wastewater treatment and bioenergy. Biotechnol Adv 25(5):464–482.  https://doi.org/10.1016/j.biotechadv.2007.05.004 CrossRefGoogle Scholar
  39. Dursun B, Gokcol C (2011) The role of hydroelectric power and contribution of small hydropower plants for sustainable development in Turkey. Renew Energy 36(4):1227–1235.  https://doi.org/10.1016/j.renene.2010.10.001 Google Scholar
  40. Easton RL, Votaw MJ (1959) Vanguard I IGY satellite (1958 Beta). Rev Sci Instrum 30(2):70–75.  https://doi.org/10.1063/1.1716492 Google Scholar
  41. Edalati K, Horita Z (2011) Significance of homologous temperature in softening behavior and grain size of pure metals processed by high-pressure torsion. Mater Sci Eng A 528(25–26):7514–7523.  https://doi.org/10.1016/j.msea.2011.06.080 Google Scholar
  42. Einstein A (1936) Physics and reality. J Frankl Inst 221(3):349–382.  https://doi.org/10.1016/S0016-0032(36)91047-5 Google Scholar
  43. Einstein A, Rosen N (1935) The particle problem in the general theory of relativity. Phys Rev 48(1):73–77Google Scholar
  44. El Chaar L, lamont LA, El Zein N (2011) Review of photovoltaic technologies. Renew Sust Energ Rev 15(5):2165–2175.  https://doi.org/10.1016/j.rser.2011.01.004 Google Scholar
  45. Eperon GE, Stranks SD, Menelaou C, Johnston MB, Herz LM, Snaith HJ (2014) Formamidinium lead trihalide: a broadly tunable perovskite for efficient planar heterojunction solar cells. Energy Environ Sci 7(3):982–988.  https://doi.org/10.1039/C3EE43822H CrossRefGoogle Scholar
  46. Erbs DG, Klein SA, Duffie JA (1982) Estimation of the diffuse radiation fraction for hourly, daily and monthly-average global radiation. Sol Energy 28(4):293–302.  https://doi.org/10.1016/0038-092X(82)90302-4 Google Scholar
  47. Even J, Pedesseau L, Jancu J-M, Katan C (2013) Importance of spin–orbit coupling in hybrid organic/inorganic perovskites for photovoltaic applications. J Phys Chem Lett 4(17):2999–3005.  https://doi.org/10.1021/jz401532q CrossRefGoogle Scholar
  48. Factoran MJ (1995) Silicon’s usefulness in photovoltaics. IEEE Potentials 14(1):8–12.  https://doi.org/10.1109/45.350561 CrossRefGoogle Scholar
  49. Fahrenbruch A, Bube R (2012) Fundamentals of solar cells: photovoltaic solar energy conversion. Elsevier Science, New YorkGoogle Scholar
  50. Fan Z, Sun K, Wang J (2015) Perovskites for photovoltaics: a combined review of organic-inorganic halide perovskites and ferroelectric oxide perovskites. J Mater Chem A 3(37):18809–18828.  https://doi.org/10.1039/C5TA04235F CrossRefGoogle Scholar
  51. Fazelpour F, Vafaeipour M, Rahbari O, Shirmohammadi R (2013) Considerable parameters of using PV cells for solar-powered aircrafts. Renew Sust Energ Rev 22:81–91.  https://doi.org/10.1016/j.rser.2013.01.016 Google Scholar
  52. Feng J, Xiao B (2014) Effective masses and electronic and optical properties of nontoxic MASnX3 (X = Cl, Br, and I) perovskite structures as solar cell absorber: a theoretical study using HSE06. J Phys Chem C 118(34):19655–19660.  https://doi.org/10.1021/jp506498k CrossRefGoogle Scholar
  53. Feron K, Belcher WJ, Fell CJ, Dastoor PC (2012) Organic solar cells: understanding the role of Forster resonance energy transfer. Int J Mol Sci 13(12):17019–17047.  https://doi.org/10.3390/ijms131217019 CrossRefGoogle Scholar
  54. Forrest SR (2005) The limits to organic photovoltaic cell efficiency. MRS Bull 30(1):28–32.  https://doi.org/10.1557/mrs2005.5 CrossRefGoogle Scholar
  55. Förster T (1949) Experimentelle und theoretische Untersuchung des zwischenmolekularen Übergangs von Elektronenanregungsenergie. Z Naturforsch A 4.  https://doi.org/10.1515/zna-1949-0501
  56. Fridleifsson IB (2001) Geothermal energy for the benefit of the people. Renew Sust Energ Rev 5(3):299–312.  https://doi.org/10.1016/S1364-0321(01)00002-8 Google Scholar
  57. Furchi MM, Zechmeister AA, Hoeller F, Wachter S, Pospischil A, Mueller T (2017) Photovoltaics in Van der Waals heterostructures. IEEE J Sel Top Quantum Electron 23(1):106–116.  https://doi.org/10.1109/JSTQE.2016.2582318 CrossRefGoogle Scholar
  58. Gao Y, Sandeep CSS, Schins JM, Houtepen AJ, Siebbeles LDA (2013) Disorder strongly enhances Auger recombination in conductive quantum-dot solids. Nat Commun 4:2329.  https://doi.org/10.1038/ncomms3329. http://www.nature.com/articles/ncomms3329#supplementary-information CrossRefGoogle Scholar
  59. Gao P, Gratzel M, Nazeeruddin MK (2014) Organohalide lead perovskites for photovoltaic applications. Energy Environ Sci 7(8):2448–2463.  https://doi.org/10.1039/C4EE00942H CrossRefGoogle Scholar
  60. Geiger T, Kuster S, Yum J-H, Moon S-J, Nazeeruddin MK, Grätzel M, Nüesch F (2009) Molecular design of unsymmetrical squaraine dyes for high efficiency conversion of low energy photons into electrons using TiO2 nanocrystalline films. Adv Funct Mater 19(17):2720–2727.  https://doi.org/10.1002/adfm.200900231 CrossRefGoogle Scholar
  61. Gevorkian Z, Gasparian V, Lozovik Y (2016) Large diffusion lengths of excitons in perovskite and TiO2 heterojunction. Appl Phys Lett 108(5):051109.  https://doi.org/10.1063/1.4941242 Google Scholar
  62. Gipe P (2004) Wind power: renewable energy for home, farm, and business. Chelsea Green Publishing Company, VermontGoogle Scholar
  63. Gisser M, Goodwin TH (1986) Crude oil and the macroeconomy: tests of some popular notions: note. J Money Credit Bank 18(1):95–103.  https://doi.org/10.2307/1992323 CrossRefGoogle Scholar
  64. Glaser PE (1968) Power from the sun: its future. Science 162(3856):857–861.  https://doi.org/10.1126/science.162.3856.857 CrossRefGoogle Scholar
  65. Goldemberg J (2007) Ethanol for a sustainable energy future. Science 315(5813):808–810.  https://doi.org/10.1126/science.1137013 CrossRefGoogle Scholar
  66. Gonzalez-Pedro V, Juarez-Perez EJ, Arsyad W-S, Barea EM, Fabregat-Santiago F, Mora-Sero I, Bisquert J (2014) General working principles of CH3NH3PbX3 perovskite solar cells. Nano Lett 14(2):888–893.  https://doi.org/10.1021/nl404252e CrossRefGoogle Scholar
  67. Gould EA, Higgs S (2009) Impact of climate change and other factors on emerging arbovirus diseases. Trans R Soc Trop Med Hyg 103(2):109–121Google Scholar
  68. Grätzel M (2003) Dye-sensitized solar cells. J Photochem Photobiol C: Photochem Rev 4(2):145–153.  https://doi.org/10.1016/S1389-5567(03)00026-1 Google Scholar
  69. Grätzel M (2005) Solar energy conversion by dye-sensitized photovoltaic cells. Inorg Chem 44(20):6841–6851.  https://doi.org/10.1021/ic0508371 CrossRefGoogle Scholar
  70. Green MA (1982) Solar cells: operating principles, technology, and system applications. Prentice-Hall, Englewood CliffsGoogle Scholar
  71. Green M (1995) Silicon solar cells: advanced principles and practice. Bridge Printery, Sydney. Available from authorGoogle Scholar
  72. Green MA (2001) Third generation photovoltaics: ultra-high conversion efficiency at low cost. Prog Photovolt Res Appl 9(2):123–135.  https://doi.org/10.1002/pip.360 CrossRefGoogle Scholar
  73. Green MA (2002a) Photovoltaic principles. Phys E 14(1–2):11–17.  https://doi.org/10.1016/S1386-9477(02)00354-5 Google Scholar
  74. Green MA (2002b) Third generation photovoltaics: solar cells for 2020 and beyond. Phys E 14(1–2):65–70.  https://doi.org/10.1016/S1386-9477(02)00361-2 Google Scholar
  75. Green MA (2004) Recent developments in photovoltaics. Sol Energy 76(1–3):3–8.  https://doi.org/10.1016/S0038-092X(03)00065-3 Google Scholar
  76. Green MA (2005) Silicon photovoltaic modules: a brief history of the first 50 years. Prog Photovolt Res Appl 13(5):447–455.  https://doi.org/10.1002/pip.612 CrossRefGoogle Scholar
  77. Green MA (2007) Thin-film solar cells: review of materials, technologies and commercial status. J Mater Sci Mater Electron 18(1):15–19.  https://doi.org/10.1007/s10854-007-9177-9 CrossRefGoogle Scholar
  78. Green MA (2009) The path to 25% silicon solar cell efficiency: history of silicon cell evolution. Prog Photovolt Res Appl 17(3):183–189.  https://doi.org/10.1002/pip.892 CrossRefGoogle Scholar
  79. Green MA, Ho-Baillie A, Snaith HJ (2014) The emergence of perovskite solar cells. Nat Photonics 8(7):506–514.  https://doi.org/10.1038/nphoton.2014.134 CrossRefGoogle Scholar
  80. Green MA, Emery K, Hishikawa Y, Warta W, Dunlop ED (2015) Solar cell efficiency tables (Version 45). Prog Photovolt Res Appl 23(1):1–9.  https://doi.org/10.1002/pip.2573 CrossRefGoogle Scholar
  81. Guo J, Lin S, Bilbao JI, White SD, Sproul AB (2017) A review of photovoltaic thermal (PV/T) heat utilisation with low temperature desiccant cooling and dehumidification. Renew Sust Energ Rev 67:1–14.  https://doi.org/10.1016/j.rser.2016.08.056 Google Scholar
  82. Hagfeldt A, Grätzel M (2000) Molecular photovoltaics. Acc Chem Res 33(5):269–277.  https://doi.org/10.1021/ar980112j CrossRefGoogle Scholar
  83. Halls JJM, Pichler K, Friend RH, Moratti SC, Holmes AB (1996) Exciton diffusion and dissociation in a poly(p-phenylenevinylene)/C60 heterojunction photovoltaic cell. Appl Phys Lett 68(22):3120–3122.  https://doi.org/10.1063/1.115797 Google Scholar
  84. Hanna MC, Nozik AJ (2006) Solar conversion efficiency of photovoltaic and photoelectrolysis cells with carrier multiplication absorbers. J Appl Phys 100(7):074510.  https://doi.org/10.1063/1.2356795 Google Scholar
  85. Hansen J, Nazarenko L, Ruedy R, Sato M, Willis J, Del Genio A, Koch D, Lacis A, Lo K, Menon S, Novakov T, Perlwitz J, Russell G, Schmidt GA, Tausnev N (2005) Earth’s energy imbalance: confirmation and implications. Science 308(5727):1431–1435.  https://doi.org/10.1126/science.1110252 CrossRefGoogle Scholar
  86. Hao F, Stoumpos CC, Cao DH, Chang RP, Kanatzidis MG (2014a) Lead-free solid-state organic-inorganic halide perovskite solar cells. Nat Photonics 8(6):489–494Google Scholar
  87. Hao F, Stoumpos CC, Chang RP, Kanatzidis MG (2014b) Anomalous band gap behavior in mixed Sn and Pb perovskites enables broadening of absorption spectrum in solar cells. J Am Chem Soc 136(22):8094–8099Google Scholar
  88. Hao F, Stoumpos CC, Liu Z, Chang RP, Kanatzidis MG (2014c) Controllable perovskite crystallization at a gas–solid interface for hole conductor-free solar cells with steady power conversion efficiency over 10%. J Am Chem Soc 136(46):16411–16419Google Scholar
  89. Heo JH, Im SH, Noh JH, Mandal TN, Lim C-S, Chang JA, Lee YH, H-j K, Sarkar A, NazeeruddinMd K, Gratzel M, Seok SI (2013) Efficient inorganic-organic hybrid heterojunction solar cells containing perovskite compound and polymeric hole conductors. Nat Photonics 7(6):486–491.  https://doi.org/10.1038/nphoton.2013.80. http://www.nature.com/nphoton/journal/v7/n6/abs/nphoton.2013.80.html#supplementary-information CrossRefGoogle Scholar
  90. Hill R (1989) Applications of photovoltaics. Taylor & Francis, LondonGoogle Scholar
  91. Hodes G (2013) Perovskite-based solar cells. Science 342(6156):317–318.  https://doi.org/10.1126/science.1245473 CrossRefGoogle Scholar
  92. Hoffert MI, Caldeira K, Benford G, Criswell DR, Green C, Herzog H, Jain AK, Kheshgi HS, Lackner KS, Lewis JS, Lightfoot HD, Manheimer W, Mankins JC, Mauel ME, Perkins LJ, Schlesinger ME, Volk T, Wigley TML (2002) Advanced technology paths to global climate stability: energy for a greenhouse planet. Science 298(5595):981–987.  https://doi.org/10.1126/science.1072357 CrossRefGoogle Scholar
  93. Hoke ET, Slotcavage DJ, Dohner ER, Bowring AR, Karunadasa HI, McGehee MD (2015) Reversible photo-induced trap formation in mixed-halide hybrid perovskites for photovoltaics. Chem Sci 6(1):613–617Google Scholar
  94. Hubbard SM, Bailey C, Polly S, Cress C, Andersen J, Forbes D, Raffaelle R (2009) Nanostructured photovoltaics for space power. NANOP 3(1):031880–031880.–031816.  https://doi.org/10.1117/1.3266502 CrossRefGoogle Scholar
  95. Huynh WU, Dittmer JJ, Alivisatos AP (2002) Hybrid nanorod-polymer solar cells. Science 295(5564):2425–2427.  https://doi.org/10.1126/science.1069156 CrossRefGoogle Scholar
  96. Iles PA (2000) Future of photovoltaics for space applications. Prog Photovolt Res Appl 8(1):39–51.  https://doi.org/10.1002/(SICI)1099-159X(200001/02)8:1<39::AID-PIP304>3.0.CO;2-D CrossRefGoogle Scholar
  97. Im J-H, Lee C-R, Lee J-W, Park S-W, Park N-G (2011) 6.5% efficient perovskite quantum-dot-sensitized solar cell. Nanoscale 3(10):4088–4093.  https://doi.org/10.1039/C1NR10867K CrossRefGoogle Scholar
  98. Im J-H, Kim H-S, Park N-G (2014) Morphology-photovoltaic property correlation in perovskite solar cells: one-step versus two-step deposition of CH3NH3PbI3. APL Mater 2(8):081510.  https://doi.org/10.1063/1.4891275 CrossRefGoogle Scholar
  99. Ishihara T (1994) Optical properties of PbI-based perovskite structures. J Lumin 60:269–274.  https://doi.org/10.1016/0022-2313(94)90145-7 Google Scholar
  100. Itzhakov S, Buhbut S, Tauber E, Geiger T, Zaban A, Oron D (2011) Design principles of FRET-based dye-sensitized solar cells with buried quantum dot donors. Adv Energy Mater 1(4):626–633.  https://doi.org/10.1002/aenm.201100110 CrossRefGoogle Scholar
  101. Jacobson MZ, Delucchi MA (2011) Providing all global energy with wind, water, and solar power, part I: technologies, energy resources, quantities and areas of infrastructure, and materials. Energ Policy 39(3):1154–1169.  https://doi.org/10.1016/j.enpol.2010.11.040 Google Scholar
  102. Janhunen P (2004) Electric sail for spacecraft propulsion. J Propuls Power 20(4):763–764.  https://doi.org/10.2514/1.8580 CrossRefGoogle Scholar
  103. Jenkinson DS, Adams DE, Wild A (1991) Model estimates of CO2 emissions from soil in response to global warming. Nature 351(6324):304–306Google Scholar
  104. Jeon NJ, Noh JH, Kim YC, Yang WS, Ryu S, Seok SI (2014) Solvent engineering for high-performance inorganic–organic hybrid perovskite solar cells. Nat Mater 13(9):897–903.  https://doi.org/10.1038/nmat4014. http://www.nature.com/nmat/journal/v13/n9/abs/nmat4014.html#supplementary-information CrossRefGoogle Scholar
  105. Karl TR, Trenberth KE (2003) Modern global climate change. Science 302(5651):1719–1723.  https://doi.org/10.1126/science.1090228 CrossRefGoogle Scholar
  106. Karthick A, Kalidasa Murugavel K, Kalaivani L, Saravana Babu U (2017) Performance study of building integrated photovoltaic modules. Adv Build Energy Res:1–17.  https://doi.org/10.1080/17512549.2016.1275982
  107. Kawamura H, Naka K, Yonekura N, Yamanaka S, Kawamura H, Ohno H, Naito K (2003) Simulation of I–V characteristics of a PV module with shaded PV cells. Sol Energy Mater Sol Cells 75(3–4):613–621.  https://doi.org/10.1016/S0927-0248(02)00134-4 Google Scholar
  108. Kayes BM, Atwater HA, Lewis NS (2005) Comparison of the device physics principles of planar and radial p-n junction nanorod solar cells. J Appl Phys 97(11):114302.  https://doi.org/10.1063/1.1901835 Google Scholar
  109. Kelzenberg MD, Turner-Evans DB, Kayes BM, Filler MA, Putnam MC, Lewis NS, Atwater HA (2008) Photovoltaic measurements in single-nanowire silicon solar cells. Nano Lett 8(2):710–714.  https://doi.org/10.1021/nl072622p CrossRefGoogle Scholar
  110. Khatib T, Mohamed A, Sopian K (2013) A review of photovoltaic systems size optimization techniques. Renew Sust Energ Rev 22:454–465.  https://doi.org/10.1016/j.rser.2013.02.023 Google Scholar
  111. Kim YS, Hochstrasser RM (2005) Chemical exchange 2D IR of hydrogen-bond making and breaking. Proc Natl Acad Sci U S A 102(32):11185–11190.  https://doi.org/10.1073/pnas.0504865102 CrossRefGoogle Scholar
  112. Kim H-S, Lee C-R, Im J-H, Lee K-B, Moehl T, Marchioro A, Moon S-J, Humphry-Baker R, Yum J-H, Moser JE, Grätzel M, Park N-G (2012) Lead iodide perovskite sensitized all-solid-state submicron thin film mesoscopic solar cell with efficiency exceeding 9%. Sci Rep 2:591.  https://doi.org/10.1038/srep00591. http://www.nature.com/articles/srep00591#supplementary-information CrossRefGoogle Scholar
  113. Kim J, Rivera JL, Meng TY, Laratte B, Chen S (2016) Review of life cycle assessment of nanomaterials in photovoltaics. Sol Energy 133:249–258.  https://doi.org/10.1016/j.solener.2016.03.060 Google Scholar
  114. Kim B, Kim K, Kim C (2017) Determining the optimal installation timing of building integrated photovoltaic systems. J Clean Prod 140(Part 3):1322–1329.  https://doi.org/10.1016/j.jclepro.2016.10.020 Google Scholar
  115. Kojima A, Teshima K, Shirai Y, Miyasaka T (2009) Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. J Am Chem Soc 131(17):6050–6051.  https://doi.org/10.1021/ja809598r CrossRefGoogle Scholar
  116. Koster LJA, Smits ECP, Mihailetchi VD, Blom PWM (2005) Device model for the operation of polymer/fullerene bulk heterojunction solar cells. Phys Rev B 72(8):085205Google Scholar
  117. Krebs FC (2009) Fabrication and processing of polymer solar cells: a review of printing and coating techniques. Sol Energy Mater Sol Cells 93(4):394–412.  https://doi.org/10.1016/j.solmat.2008.10.004 Google Scholar
  118. Krebs FC, Carlé JE, Cruys-Bagger N, Andersen M, Lilliedal MR, Hammond MA, Hvidt S (2005) Lifetimes of organic photovoltaics: photochemistry, atmosphere effects and barrier layers in ITO-MEHPPV:PCBM-aluminium devices. Sol Energy Mater Sol Cells 86(4):499–516.  https://doi.org/10.1016/j.solmat.2004.09.002 Google Scholar
  119. Lee MM, Teuscher J, Miyasaka T, Murakami TN, Snaith HJ (2012) Efficient hybrid solar cells based on meso-superstructured organometal halide perovskites. Science 338(6107):643–647.  https://doi.org/10.1126/science.1228604 CrossRefGoogle Scholar
  120. Lee E, Kim C, Jang J (2013) High-performance Forster resonance energy transfer (FRET)-based dye-sensitized solar cells: rational design of quantum dots for wide solar-spectrum utilization. Chemistry (Weinheim an der Bergstrasse, Germany) 19(31):10280–10286.  https://doi.org/10.1002/chem.201300953 CrossRefGoogle Scholar
  121. Leest RH, Mulder P, Gruginskie N, Laar SCW, Bauhuis GJ, Cheun H, Lee H, Yoon W, Heijden R, Bongers E, Vlieg E, Schermer JJ (2017) Temperature-induced degradation of thin-film III–V solar cells for space applications. IEEE J Photovolt 7(2):702–708.  https://doi.org/10.1109/JPHOTOV.2016.2642642
  122. Lehmann J (2007) A handful of carbon. Nature 447(7141):143–144Google Scholar
  123. Lewis NS (2007) Toward cost-effective solar energy use. Science 315(5813):798–801.  https://doi.org/10.1126/science.1137014 CrossRefGoogle Scholar
  124. Lewis NS, Nocera DG (2006) Powering the planet: chemical challenges in solar energy utilization. Proc Natl Acad Sci 103(43):15729–15735.  https://doi.org/10.1073/pnas.0603395103 CrossRefGoogle Scholar
  125. Li C, Lu X, Ding W, Feng L, Gao Y, Guo Z (2008) Formability of ABX3 (X = F, Cl, Br, I) halide perovskites. Acta Crystallogr Sect B: Struct Sci 64(Pt 6):702–707.  https://doi.org/10.1107/s0108768108032734 CrossRefGoogle Scholar
  126. Li C, Liu M, Pschirer NG, Baumgarten M, Müllen K (2010) Polyphenylene-based materials for organic photovoltaics. Chem Rev 110(11):6817–6855.  https://doi.org/10.1021/cr100052z CrossRefGoogle Scholar
  127. Li Y, Yan W, Li Y, Wang S, Wang W, Bian Z, Xiao L, Gong Q (2015) Direct observation of long electron-hole diffusion distance in CH3NH3PbI3 perovskite thin film. Sci Rep 5:14485.  https://doi.org/10.1038/srep14485. http://www.nature.com/articles/srep14485#supplementary-information CrossRefGoogle Scholar
  128. Lie X, Cartwright P (2006) Direct active and reactive power control of DFIG for wind energy generation. IEEE Trans Energy Convers 21(3):750–758.  https://doi.org/10.1109/TEC.2006.875472 CrossRefGoogle Scholar
  129. Liu M, Johnston MB, Snaith HJ (2013) Efficient planar heterojunction perovskite solar cells by vapour deposition. Nature 501(7467):395–398Google Scholar
  130. Liu L, Zhang G, He B, Liu S, Duan C, Huang F (2017) Novel donor-acceptor type conjugated polymers based on quinoxalino[6,5-f]quinoxaline for photovoltaic applications. Mater Chem Front.  https://doi.org/10.1039/C6QM00130K
  131. Lund JW, Freeston DH (2001) World-wide direct uses of geothermal energy 2000. Geothermics 30(1):29–68.  https://doi.org/10.1016/S0375-6505(00)00044-4 Google Scholar
  132. Madakasira P, Inoue K, Ulbricht R, Lee SB, Zhou M, Ferraris JP, Zakhidov AA (2005) Multilayer encapsulation of plastic photovoltaic devices. Synth Met 155(2):332–335.  https://doi.org/10.1016/j.synthmet.2005.09.035 Google Scholar
  133. Mailoa JP, Bailie CD, Johlin EC, Hoke ET, Akey AJ, Nguyen WH, McGehee MD, Buonassisi T (2015) A 2-terminal perovskite/silicon multijunction solar cell enabled by a silicon tunnel junction. Appl Phys Lett 106(12):121105Google Scholar
  134. Martí A, Balenzategui JL, Reyna RF (1997) Photon recycling and Shockley’s diode equation. J Appl Phys 82(8):4067–4075.  https://doi.org/10.1063/1.365717 Google Scholar
  135. Masetti G, Severi M, Solmi S (1983) Modeling of carrier mobility against carrier concentration in arsenic-, phosphorus-, and boron-doped silicon. IEEE Trans Electron Devices 30(7):764–769.  https://doi.org/10.1109/T-ED.1983.21207 CrossRefGoogle Scholar
  136. Masuko K, Shigematsu M, Hashiguchi T, Fujishima D, Kai M, Yoshimura N, Yamaguchi T, Ichihashi Y, Mishima T, Matsubara N, Yamanishi T, Takahama T, Taguchi M, Maruyama E, Okamoto S (2014) Achievement of more than 25% conversion efficiency with crystalline silicon heterojunction solar cell. IEEE J Photovolt 4(6):1433–1435.  https://doi.org/10.1109/JPHOTOV.2014.2352151 Google Scholar
  137. McEvoy A, Markvart T, Castaner L, Markvart T, Castaner L (2003) Practical handbook of photovoltaics: fundamentals and applications. Elsevier Science, BostonGoogle Scholar
  138. McGehee MD (2014) Perovskite solar cells: continuing to soar. Nat Mater 13(9):845–846Google Scholar
  139. Menyah K, Wolde-Rufael Y (2010) CO2 emissions, nuclear energy, renewable energy and economic growth in the US. Energ Policy 38(6):2911–2915Google Scholar
  140. Mielke HW, Gonzales CR, Smith MK, Mielke PW (1999) The urban environment and children’s health: soils as an integrator of lead, zinc, and cadmium in New Orleans, Louisiana, U.S.A. Environ Res 81(2):117–129.  https://doi.org/10.1006/enrs.1999.3966 Google Scholar
  141. Millikan RA (1916) A direct photoelectric determination of Planck’s “$h$”. Phys Rev 7(3):355–388Google Scholar
  142. Mitzi DB, Yuan M, Liu W, Kellock AJ, Chey SJ, Deline V, Schrott AG (2008) A high-efficiency solution-deposited thin-film photovoltaic device. Adv Mater 20(19):3657–3662.  https://doi.org/10.1002/adma.200800555 CrossRefGoogle Scholar
  143. Moerner WE, Fromm DP (2003) Methods of single-molecule fluorescence spectroscopy and microscopy. Rev Sci Instrum 74(8):3597–3619.  https://doi.org/10.1063/1.1589587 Google Scholar
  144. Mohandes M, Rehman S, Halawani TO (1998) Estimation of global solar radiation using artificial neural networks. Renew Energy 14(1):179–184.  https://doi.org/10.1016/S0960-1481(98)00065-2 Google Scholar
  145. Mok SC (2011) New village gadgets: synergy of human-powered generation and ultra-efficient electrical appliances for poverty eradication. In: 2011 I.E. Global Humanitarian Technology Conference, October 30 2011–November 1 2011, pp 25–29.  https://doi.org/10.1109/GHTC.2011.12
  146. Møller H, Pedersen CS (2011) Low-frequency noise from large wind turbines. J Acoust Soc Am 129(6):3727–3744.  https://doi.org/10.1121/1.3543957 Google Scholar
  147. Mor GK, Basham J, Paulose M, Kim S, Varghese OK, Vaish A, Yoriya S, Grimes CA (2010) High-efficiency Forster resonance energy transfer in solid-state dye sensitized solar cells. Nano Lett 10(7):2387–2394Google Scholar
  148. Munir R, Sheikh AD, Abdelsamie M, Hu H, Yu L, Zhao K, Kim T, Tall OE, Li R, Smilgies D-M, Amassian A (2017) Perovskite photovoltaics: hybrid perovskite thin-film photovoltaics: in situ diagnostics and importance of the precursor solvate phases (Adv. Mater. 2/2017). Adv Mater 29(2):n/a–n/a.  https://doi.org/10.1002/adma.201770014 CrossRefGoogle Scholar
  149. Najafov H, Lee B, Zhou Q, Feldman LC, Podzorov V (2010) Observation of long-range exciton diffusion in highly ordered organic semiconductors. Nat Mater 9(11):938–943. http://www.nature.com/nmat/journal/v9/n11/abs/nmat2872.html#supplementary-information Google Scholar
  150. Navrotsky A (1998) Energetics and crystal chemical systematics among ilmenite, lithium niobate, and perovskite structures. Chem Mater 10(10):2787–2793.  https://doi.org/10.1021/cm9801901 CrossRefGoogle Scholar
  151. Nayak PK, Bisquert J, Cahen D (2011) Assessing possibilities and limits for solar cells. Adv Mater 23(25):2870–2876.  https://doi.org/10.1002/adma.201100877 CrossRefGoogle Scholar
  152. Nemet GF (2006) Beyond the learning curve: factors influencing cost reductions in photovoltaics. Energ Policy 34(17):3218–3232.  https://doi.org/10.1016/j.enpol.2005.06.020 Google Scholar
  153. Neugebauer H, Brabec C, Hummelen JC, Sariciftci NS (2000) Stability and photodegradation mechanisms of conjugated polymer/fullerene plastic solar cells. Sol Energy Mater Sol Cells 61(1):35–42.  https://doi.org/10.1016/S0927-0248(99)00094-X Google Scholar
  154. Niu G, Guo X, Wang L (2015) Review of recent progress in chemical stability of perovskite solar cells. J Mater Chem A 3(17):8970–8980.  https://doi.org/10.1039/C4TA04994B CrossRefGoogle Scholar
  155. Norton B, Eames PC, Mallick TK, Huang MJ, McCormack SJ, Mondol JD, Yohanis YG (2011) Enhancing the performance of building integrated photovoltaics. Sol Energy 85(8):1629–1664.  https://doi.org/10.1016/j.solener.2009.10.004 Google Scholar
  156. Nozik AJ (2008) Multiple exciton generation in semiconductor quantum dots. Chem Phys Lett 457(1–3):3–11.  https://doi.org/10.1016/j.cplett.2008.03.094 Google Scholar
  157. O’Regan B, Gratzel M (1991) A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films. Nature 353(6346):737–740Google Scholar
  158. Oliver M, Jackson T (2001) Energy and economic evaluation of building-integrated photovoltaics. Energy 26(4):431–439.  https://doi.org/10.1016/S0360-5442(01)00009-3 Google Scholar
  159. Parida B, Iniyan S, Goic R (2011) A review of solar photovoltaic technologies. Renew Sust Energ Rev 15(3):1625–1636.  https://doi.org/10.1016/j.rser.2010.11.032 Google Scholar
  160. Patz JA, Campbell-Lendrum D, Holloway T, Foley JA (2005) Impact of regional climate change on human health. Nature 438(7066):310–317Google Scholar
  161. Petek H (2017) Photoemission electron microscopy: photovoltaics in action. Nat Nanotechnol 12(1):3–4.  https://doi.org/10.1038/nnano.2016.287 CrossRefGoogle Scholar
  162. Priambodo PS, Sukoco D, Purnomo W, Sudibyo H, Hartanto D (2013) Electric energy management and engineering in solar cell system. Solar Cells – Res Appl Perspect, InTech 12:327–351.  https://doi.org/10.1016/1043396
  163. Ramanathan K, Contreras MA, Perkins CL, Asher S, Hasoon FS, Keane J, Young D, Romero M, Metzger W, Noufi R, Ward J, Duda A (2003) Properties of 19.2% efficiency ZnO/CdS/CuInGaSe2 thin-film solar cells. Prog Photovolt Res Appl 11(4):225–230.  https://doi.org/10.1002/pip.494 CrossRefGoogle Scholar
  164. Reinders A, Freundlich A, Verlinden P, van Sark W (2017) Photovoltaic solar energy: from fundamentals to applications. John Wiley & Sons, ChichesterGoogle Scholar
  165. Repins I, Contreras MA, Egaas B, DeHart C, Scharf J, Perkins CL, To B, Noufi R (2008) 19·9%-efficient ZnO/CdS/CuInGaSe2 solar cell with 81·2% fill factor. Prog Photovolt Res Appl 16(3):235–239.  https://doi.org/10.1002/pip.822 CrossRefGoogle Scholar
  166. Robertson GP, Paul EA, Harwood RR (2000) Greenhouse gases in intensive agriculture: contributions of individual gases to the radiative forcing of the atmosphere. Science 289(5486):1922–1925.  https://doi.org/10.1126/science.289.5486.1922 CrossRefGoogle Scholar
  167. Root TL, Price JT, Hall KR, Schneider SH, Rosenzweig C, Pounds JA (2003) Fingerprints of global warming on wild animals and plants. Nature 421(6918):57–60. http://www.nature.com/nature/journal/v421/n6918/suppinfo/nature01333_S1.html Google Scholar
  168. Saeed S, de Jong EMLD, Dohnalova K, Gregorkiewicz T (2014) Efficient optical extraction of hot-carrier energy. Nat Commun 5:4665.  https://doi.org/10.1038/ncomms5665. http://www.nature.com/articles/ncomms5665#supplementary-information CrossRefGoogle Scholar
  169. Sasaki S, Prewitt C, Bass J, Schulze W (1987) Orthorhombic perovskite CaTiO3 and CdTiO3: structure and space group. Acta Crystallogr Sect C: Cryst Struct Commun 43:1668–1674Google Scholar
  170. Serrano-Lujan L, Espinosa N, Larsen-Olsen TT, Abad J, Urbina A, Krebs FC (2015) Tin- and lead-based perovskite solar cells under scrutiny: an environmental perspective. Adv Energy Mater 5(20):1501119.–n/a.  https://doi.org/10.1002/aenm.201501119 CrossRefGoogle Scholar
  171. Shah A, Torres P, Tscharner R, Wyrsch N, Keppner H (1999) Photovoltaic technology: the case for thin-film solar cells. Science 285(5428):692–698.  https://doi.org/10.1126/science.285.5428.692 CrossRefGoogle Scholar
  172. Shankar K, Feng X, Grimes CA (2009) Enhanced harvesting of red photons in nanowire solar cells: evidence of resonance energy transfer. ACS Nano 3(4):788–794Google Scholar
  173. Shindell D, Rind D, Balachandran N, Lean J, Lonergan P (1999) Solar cycle variability, ozone, and climate. Science 284(5412):305–308.  https://doi.org/10.1126/science.284.5412.305 CrossRefGoogle Scholar
  174. Shockley W, Queisser HJ (1961) Detailed balance limit of efficiency of p-n junction solar cells. J Appl Phys 32(3):510–519.  https://doi.org/10.1063/1.1736034 Google Scholar
  175. Sinclair TR, Horie T (1989) Leaf nitrogen, photosynthesis, and crop radiation use efficiency: a review. Crop Sci 29(1):90–98.  https://doi.org/10.2135/cropsci1989.0011183X002900010023x CrossRefGoogle Scholar
  176. Singh GK (2013) Solar power generation by PV (photovoltaic) technology: a review. Energy 53:1–13.  https://doi.org/10.1016/j.energy.2013.02.057 Google Scholar
  177. Sites J, Pan J (2007) Strategies to increase CdTe solar-cell voltage. Thin Solid Films 515(15):6099–6102.  https://doi.org/10.1016/j.tsf.2006.12.147 Google Scholar
  178. Smith IC, Hoke ET, Solis-Ibarra D, McGehee MD, Karunadasa HI (2014) A layered hybrid perovskite solar-cell absorber with enhanced moisture stability. Angew Chem 126(42):11414–11417Google Scholar
  179. Snaith HJ (2013) Perovskites: the emergence of a new era for low-cost, high-efficiency solar cells. J Phys Chem Lett 4(21):3623–3630Google Scholar
  180. Snaith HJ, Abate A, Ball JM, Eperon GE, Leijtens T, Noel NK, Stranks SD, Wang JT-W, Wojciechowski K, Zhang W (2014) Anomalous hysteresis in perovskite solar cells. J Phys Chem Lett 5(9):1511–1515Google Scholar
  181. Soavi G, Scotognella F, Viola D, Hefner T, Hertel T, Cerullo G, Lanzani G (2015) High energetic excitons in carbon nanotubes directly probe charge-carriers. Sci Rep 5:9681.  https://doi.org/10.1038/srep09681. http://www.nature.com/articles/srep09681#supplementary-information CrossRefGoogle Scholar
  182. Solangi KH, Islam MR, Saidur R, Rahim NA, Fayaz H (2011) A review on global solar energy policy. Renew Sust Energ Rev 15(4):2149–2163.  https://doi.org/10.1016/j.rser.2011.01.007 Google Scholar
  183. Solomon S, Plattner G-K, Knutti R, Friedlingstein P (2009) Irreversible climate change due to carbon dioxide emissions. Proc Natl Acad Sci 106(6):1704–1709.  https://doi.org/10.1073/pnas.0812721106 CrossRefGoogle Scholar
  184. Stainforth DA, Aina T, Christensen C, Collins M, Faull N, Frame DJ, Kettleborough JA, Knight S, Martin A, Murphy JM, Piani C, Sexton D, Smith LA, Spicer RA, Thorpe AJ, Allen MR (2005) Uncertainty in predictions of the climate response to rising levels of greenhouse gases. Nature 433(7024):403–406. http://www.nature.com/nature/journal/v433/n7024/suppinfo/nature03301_S1.html Google Scholar
  185. Stolt L, Hedström J, Kessler J, Ruckh M, Velthaus KO, Schock HW (1993) ZnO/CdS/CuInSe2 thin-film solar cells with improved performance. Appl Phys Lett 62(6):597–599.  https://doi.org/10.1063/1.108867 Google Scholar
  186. Stranks SD, Eperon GE, Grancini G, Menelaou C, Alcocer MJ, Leijtens T, Herz LM, Petrozza A, Snaith HJ (2013a) Electron-hole diffusion lengths exceeding 1 micrometer in an organometal trihalide perovskite absorber. Science 342(6156):341–344Google Scholar
  187. Stranks SD, Eperon GE, Grancini G, Menelaou C, Alcocer MJP, Leijtens T, Herz LM, Petrozza A, Snaith HJ (2013b) Electron-hole diffusion lengths exceeding 1 micrometer in an organometal trihalide perovskite absorber. Science 342(6156):341–344.  https://doi.org/10.1126/science.1243982 CrossRefGoogle Scholar
  188. Stübinger T, Brütting W (2001) Exciton diffusion and optical interference in organic donor–acceptor photovoltaic cells. J Appl Phys 90(7):3632–3641.  https://doi.org/10.1063/1.1394920 Google Scholar
  189. Sun Y, Welch GC, Leong WL, Takacs CJ, Bazan GC, Heeger AJ (2012) Solution-processed small-molecule solar cells with 6.7% efficiency. Nat Mater 11(1):44–48. http://www.nature.com/nmat/journal/v11/n1/abs/nmat3160.html#supplementary-information Google Scholar
  190. Talapin DV, Rogach AL, Kornowski A, Haase M, Weller H (2001) Highly luminescent monodisperse CdSe and CdSe/ZnS nanocrystals synthesized in a hexadecylamine−trioctylphosphine oxide−trioctylphospine mixture. Nano Lett 1(4):207–211.  https://doi.org/10.1021/nl0155126 CrossRefGoogle Scholar
  191. Tang CW (1986) Two-layer organic photovoltaic cell. Appl Phys Lett 48(2):183–185.  https://doi.org/10.1063/1.96937 Google Scholar
  192. Tejuca LG, Fierro JLG (1992) Properties and applications of perovskite-type oxides. Taylor & Francis, New YorkGoogle Scholar
  193. Toon OB, Pollack JB (1980) Atmospheric aerosols and climate: small particles in the earth’s atmosphere interact with visible and infrared light, altering the radiation balance and the climate. Am Sci 68(3):268–278Google Scholar
  194. Tress W (2016) Maximum efficiency and open-circuit voltage of perovskite solar cells. In: Park N-G, Grätzel M, Miyasaka T (eds) Organic-inorganic halide perovskite photovoltaics: from fundamentals to device architectures. Springer International Publishing, Cham, pp 53–77.  https://doi.org/10.1007/978-3-319-35114-8_3 CrossRefGoogle Scholar
  195. Tringe J, Merrill J, Reinhardt K (2000) Developments in thin-film photovoltaics for space. In: Conference Record of the Twenty-Eighth IEEE Photovoltaic Specialists Conference – 2000 (Cat. No.00CH37036), 2000. pp 1242–1245.  https://doi.org/10.1109/PVSC.2000.916114
  196. Tung VC, Chen L-M, Allen MJ, Wassei JK, Nelson K, Kaner RB, Yang Y (2009) Low-temperature solution processing of graphene−carbon nanotube hybrid materials for high-performance transparent conductors. Nano Lett 9(5):1949–1955.  https://doi.org/10.1021/nl9001525 CrossRefGoogle Scholar
  197. Turner JA (1999) A realizable renewable energy future. Science 285(5428):687–689Google Scholar
  198. Unger E, Hoke E, Bailie C, Nguyen W, Bowring A, Heumüller T, Christoforo M, McGehee M (2014) Hysteresis and transient behavior in current–voltage measurements of hybrid-perovskite absorber solar cells. Energy Environ Sci 7(11):3690–3698Google Scholar
  199. Varun, Bhat IK, Prakash R (2009) LCA of renewable energy for electricity generation systems—a review. Renew Sust Energ Rev 13(5):1067–1073.  https://doi.org/10.1016/j.rser.2008.08.004 Google Scholar
  200. Villalva MG, Gazoli JR, Filho ER (2009) Comprehensive approach to modeling and simulation of photovoltaic arrays. IEEE Trans Power Electron 24(5):1198–1208.  https://doi.org/10.1109/TPEL.2009.2013862 CrossRefGoogle Scholar
  201. Vinayakumar V, Shaji S, Avellaneda D, Das Roy TK, Castillo GA, Martinez JAA, Krishnan B (2017) CuSbS2 thin films by rapid thermal processing of Sb2S3-Cu stack layers for photovoltaic application. Sol Energy Mater Sol Cells 164:19–27.  https://doi.org/10.1016/j.solmat.2017.02.005 Google Scholar
  202. Vogelbaum HS, Sauvé G (2017) Recently developed high-efficiency organic photoactive materials for printable photovoltaic cells: a mini review. Synth Met 223:107–121.  https://doi.org/10.1016/j.synthmet.2016.12.011 Google Scholar
  203. Voivontas D, Assimacopoulos D, Mourelatos A, Corominas J (1998) Evaluation of renewable energy potential using a GIS decision support system. Renew Energy 13(3):333–344.  https://doi.org/10.1016/S0960-1481(98)00006-8 Google Scholar
  204. Vos AD (1980) Detailed balance limit of the efficiency of tandem solar cells. J Phys D Appl Phys 13(5):839Google Scholar
  205. Walmsley JD, Godbold DL (2010) Stump harvesting for bioenergy – a review of the environmental impacts. Forestry 83(1):17–38.  https://doi.org/10.1093/forestry/cpp028 CrossRefGoogle Scholar
  206. Wang RZ, Li M, Xu YX, Wu JY (2000) An energy efficient hybrid system of solar powered water heater and adsorption ice maker. Sol Energy 68(2):189–195.  https://doi.org/10.1016/S0038-092X(99)00062-6 Google Scholar
  207. Wang KX, Yu Z, Liu V, Cui Y, Fan S (2012) Absorption enhancement in ultrathin crystalline silicon solar cells with antireflection and light-trapping nanocone gratings. Nano Lett 12(3):1616–1619.  https://doi.org/10.1021/nl204550q CrossRefGoogle Scholar
  208. Wenham SR, Green MA (1996) Silicon solar cells. Prog Photovolt Res Appl 4(1):3–33.  https://doi.org/10.1002/(SICI)1099-159X(199601/02)4:1<3::AID-PIP117>3.0.CO;2-S CrossRefGoogle Scholar
  209. Williams R (1960) Becquerel photovoltaic effect in binary compounds. J Chem Phys 32(5):1505–1514.  https://doi.org/10.1063/1.1730950 Google Scholar
  210. Würfel P (1997) Solar energy conversion with hot electrons from impact ionisation. Sol Energy Mater Sol Cells 46(1):43–52.  https://doi.org/10.1016/S0927-0248(96)00092-X Google Scholar
  211. Xie Y, Wang S, Lin L, Jing Q, Lin Z-H, Niu S, Wu Z, Wang ZL (2013) Rotary triboelectric nanogenerator based on a hybridized mechanism for harvesting wind energy. ACS Nano 7(8):7119–7125.  https://doi.org/10.1021/nn402477h CrossRefGoogle Scholar
  212. Yamaguchi M (2003) III–V compound multi-junction solar cells: present and future. Sol Energy Mater Sol Cells 75(1–2):261–269.  https://doi.org/10.1016/S0927-0248(02)00168-X Google Scholar
  213. Yang WS, Noh JH, Jeon NJ, Kim YC, Ryu S, Seo J, Seok SI (2015) High-performance photovoltaic perovskite layers fabricated through intramolecular exchange. Science 348(6240):1234–1237.  https://doi.org/10.1126/science.aaa9272 CrossRefGoogle Scholar
  214. Yeh WWG (1985) Reservoir management and operations models: a state-of-the-art review. Water Resour Res 21(12):1797–1818.  https://doi.org/10.1029/WR021i012p01797 CrossRefGoogle Scholar
  215. Yin W-J, Yang J-H, Kang J, Yan Y, Wei S-H (2015) Halide perovskite materials for solar cells: a theoretical review. J Mater Chem A 3(17):8926–8942.  https://doi.org/10.1039/C4TA05033A CrossRefGoogle Scholar
  216. Yin X, Chen P, Que M, Xing Y, Que W, Niu C, Shao J (2016) Highly efficient flexible perovskite solar cells using solution-derived NiOx hole contacts. ACS Nano 10(3):3630–3636.  https://doi.org/10.1021/acsnano.5b08135 CrossRefGoogle Scholar
  217. Yu G, Gao J, Hummelen JC, Wudl F, Heeger AJ (1995) Polymer photovoltaic cells: enhanced efficiencies via a network of internal donor-acceptor heterojunctions. Science 270(5243):1789–1791.  https://doi.org/10.1126/science.270.5243.1789 CrossRefGoogle Scholar
  218. Yuan J, Ouyang J, Cimrova V, Leclerc M, Najari A, Zou Y (2017) Development of quinoxaline based polymers for photovoltaic applications. J Mater Chem C 5(8):1858–1879.  https://doi.org/10.1039/C6TC05381E CrossRefGoogle Scholar
  219. Yüksel I (2010) Hydropower for sustainable water and energy development. Renew Sust Energ Rev 14(1):462–469.  https://doi.org/10.1016/j.rser.2009.07.025 Google Scholar
  220. Zahedi A (2006) Solar photovoltaic (PV) energy; latest developments in the building integrated and hybrid PV systems. Renew Energy 31(5):711–718.  https://doi.org/10.1016/j.renene.2005.08.007 Google Scholar
  221. Zakutayev A (2017) Brief review of emerging photovoltaic absorber materials. Curr Opin Green Sustain Chem 4:8–15. https://doi.org/10.1016/j.cogsc.2017.01.002
  222. Zhang G, Finefrock S, Liang D, Yadav GG, Yang H, Fang H, Wu Y (2011) Semiconductor nanostructure-based photovoltaic solar cells. Nanoscale 3(6):2430–2443.  https://doi.org/10.1039/C1NR10152H CrossRefGoogle Scholar
  223. Zhao J, Wang A, Green MA, Ferrazza F (1998) 19.8% efficient “honeycomb” textured multicrystalline and 24.4% monocrystalline silicon solar cells. Appl Phys Lett 73(14):1991–1993.  https://doi.org/10.1063/1.122345 Google Scholar
  224. Zhou Y, Eck M, Kruger M (2010) Bulk-heterojunction hybrid solar cells based on colloidal nanocrystals and conjugated polymers. Energy Environ Sci 3(12):1851–1864.  https://doi.org/10.1039/C0EE00143K CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Mallika Dasari
    • 1
  • Rajesh P. Balaraman
    • 1
  • Punit Kohli
    • 1
  1. 1.Department of Chemistry and BiochemistrySouthern Illinois UniversityCarbondaleUSA

Personalised recommendations