Advertisement

A Deep Learning Approach to Case Based Reasoning to the Evaluation and Diagnosis of Cervical Carcinoma

  • José NevesEmail author
  • Henrique Vicente
  • Filipa Ferraz
  • Ana Catarina Leite
  • Ana Rita Rodrigues
  • Manuela Cruz
  • Joana Machado
  • João Neves
  • Luzia Sampaio
Chapter
Part of the Studies in Computational Intelligence book series (SCI, volume 769)

Abstract

Deep Learning (DL) is a new area of Machine Learning research introduced with the objective of moving Machine Learning closer to one of its original goals, i.e., Artificial Intelligence (AI). DL breaks down tasks in ways that makes all kinds of machine assists seem possible, even likely. Better preventive healthcare, even better recommendations, are all here today or on the horizon. However, keeping up the pace of progress will require confronting currently AI’s serious limitations. The last but not the least, Cervical Carcinoma is actuality a critical public health problem. Although patients have a longer survival rate due to early diagnosis and more effective treatment, this disease is still the leading cause of cancer death among women. Therefore, the main objective of this article is to present a DL approach to Case Based Reasoning in order to evaluate and diagnose Cervical Carcinoma using Magnetic Resonance Imaging. It will be grounded on a dynamic virtual world of complex and interactive entities that compete against one another in which its aptitude is judged by a single criterion, the Quality of Information they carry and the system’s Degree of Confidence on such a measure, under a fixed symbolic structure.

Keywords

Artificial Intelligence Deep Learning Machine Learning Cervical Carcinoma Magnetic Resonance Imaging Logic Programming Knowledge Representation and Reasoning Case Based Reasoning 

Notes

Acknowledgements

This work has been supported by COMPETE: POCI-01-0145-FEDER-007043 and FCT—Fundação para a Ciência e Tecnologia within the Project Scope: UID/CEC/00319/2013.

References

  1. 1.
    Rumelhart, D.E., Hinton, G.E., Williams, R.J.: Learning internal representation by error propagation. In: Rumelhart, D.E., McClelland, J.L. (eds.) Parallel Distributed Processing: Explorations in the Microstructure of Cognition, vol. 1, pp. 318–362. MIT Press, Cambridge (1986)Google Scholar
  2. 2.
    Rumelhart, D.E., Hinton, G.E., Williams, R.J.: Learning representations by back-propagating errors. Nature 323, 533–536 (1986)CrossRefzbMATHGoogle Scholar
  3. 3.
  4. 4.
    Sousa, A.: Cervical Cancer: Trends and Studies. Fernando Pessoa University Edition, Oporto (2011)Google Scholar
  5. 5.
    Deng, S., Zhu, L., Huang, D.: Predicting hub genes associated with cervical cancer through gene co-expression networks. IEEE/ACM Trans. Comput. Biol. Bioinf. 13, 27–35 (2016)CrossRefGoogle Scholar
  6. 6.
    U.S. Cancer Statistics Working Group: United States Cancer Statistics: 1999–2014 Incidence and Mortality Web-based Report. http://www.cdc.gov/uscs
  7. 7.
  8. 8.
    Remya, V., Lekshmi-Priya V.L.: Simultaneous segmentation and tumor detection in MRI cervical cancer radiation therapy with hierarchical adaptive local affine registration. In: Proceedings of the 2014 International Conference on Computer Communication and Informatics, 6 pp. IEEE Edition (2014)Google Scholar
  9. 9.
    Leake, D.B.: Case-Based Reasoning: Experiences, Lessons and Future Directions. MIT Press Cambridge, Massachusetts (1996)Google Scholar
  10. 10.
    Mithlesh, A., Namita, M., Girdhari, S.: Cervical cancer detection using segmentation on Pap smear images. In: Proceedings of the 1st International Conference on Informatics and Analytics, Article 29, Association for Computing Machinery, New York (2016)Google Scholar
  11. 11.
    Vaccarella, S., Lortet-Tieulent, J., Plummer, M., Franceschi, S., Bray, F.: Worldwide trends in cervical cancer incidence: Impact of screening against changes in disease risk factors. Eur. J. Cancer 49, 3262–3273 (2013)CrossRefGoogle Scholar
  12. 12.
    Pecorelli, S.: Corrigendum to “Revised FIGO staging for carcinoma of the vulva, cervix, and endometrium”. Int. J. Gynecol. Obstet. 108, 176 (2010)CrossRefGoogle Scholar
  13. 13.
    Kakas, A., Kowalski, R., Toni, F.: The role of abduction in logic programming. In: Gabbay, D., Hogger, C., Robinson, I. (eds.) Handbook of Logic in Artificial Intelligence and Logic Programming, vol. 5, pp. 235–324. Oxford University Press, Oxford (1998)Google Scholar
  14. 14.
    Pereira, L., Anh, H.: Evolution prospection. In: Nakamatsu, K. (ed.) Studies in Computational Intelligence, vol. 199, pp. 51–64. Springer, Berlin (2009)Google Scholar
  15. 15.
    Neves, J., Machado, J., Analide, C., Abelha, A., Brito, L.: The halt condition in genetic programming. In: Neves, J., Santos, M.F., Machado, J. (eds.) Progress in Artificial Intelligence. LNAI, vol. 4874, pp. 160–169. Springer, Berlin (2007)CrossRefGoogle Scholar
  16. 16.
    Neves, J.: A logic interpreter to handle time and negation in logic databases. In: Muller, R., Pottmyer, J. (eds.) Proceedings of the 1984 annual conference of the ACM on the 5th Generation Challenge, pp. 50–54. Association for Computing Machinery, New York (1984)Google Scholar
  17. 17.
    Machado J., Abelha A., Novais P., Neves J., Neves J.: Quality of service in healthcare units. In Bertelle, C., Ayesh, A. (eds.) Proceedings of the ESM 2008, pp. 291–298. Eurosis – ETI Publication, Ghent (2008)Google Scholar
  18. 18.
    Fernandes, A., Vicente, H., Figueiredo, M., Neves, M., Neves, J.: An adaptive and evolutionary model to assess the organizational efficiency in training corporations. In: Dang, T.K., Wagner, R., Küng, J., Thoai, N., Takizawa, M., Neuhold, E. (eds.) Future Data and Security Engineering. Lecture Notes on Computer Science, vol. 10018, pp. 415–428. Springer International Publishing, Cham (2016)CrossRefGoogle Scholar
  19. 19.
    Fernandes, F., Vicente, H., Abelha, A., Machado, J., Novais, P., Neves J.: Artificial Neural Networks in Diabetes Control. In Proceedings of the 2015 Science and Information Conference (SAI 2015), pp. 362–370. IEEE Edition (2015)Google Scholar
  20. 20.
    Quintas, A., Vicente, H., Novais, P., Abelha, A., Santos, M.F., Machado, J., Neves, J.: A case based approach to assess waiting time prediction at an intensive care unity. In: Arezes, P. (ed.) Advances in Safety Management and Human Factors. Advances in Intelligent Systems and Computing, vol. 491, pp. 29–39. Springer International Publishing, Cham (2016)CrossRefGoogle Scholar
  21. 21.
    Silva, A., Vicente, H., Abelha, A., Santos, M.F., Machado, J., Neves, J., Neves, J.: Length of stay in intensive care units—a case base evaluation. In: Fujita, H., Papadopoulos, G.A. (eds.) New Trends in Software Methodologies, Tools and Techniques, Frontiers in Artificial Intelligence and Applications, vol. 286, pp. 191–202. IOS Press, Amsterdam (2016)Google Scholar
  22. 22.
  23. 23.
    Perdigão, N., Tavares, J.M., Martins, J.A., Pires, E.B., Jorge, R. M.: Sobre a Geração de Malhas Tridimensionais para fins computacionais a partir de imagens médicas. In Aparicio, J.L., Ferran, A.R., Martins, J.A., Gallego, R., Sá, J.C. (eds.) Proceedings of the Congreso de Métodos Numéricos en Ingeniería, 16 pp. SEMNI, Barcelona (2005)Google Scholar
  24. 24.
    Hasan, D.I., Enaba, M.M., El-Rahman, H.M.A., El-Shazely, S.: Apparent diffusion coefficient value in evaluating types, stages and histologic grading of cancer cervix. Egypt. J. Radiol. Nuclear Med. 46, 781–789 (2015)CrossRefGoogle Scholar
  25. 25.
    Camisão, C., Brenna, C., Lombardelli, S., Djahjah, K., Zeferino, L.: Magnetic resonance imaging in the staging of cervical cancer. Radiologia Brasileira 40, 207–215 (2007)CrossRefGoogle Scholar
  26. 26.
    The Cancer Imaging Archive (TCIA). http://www.cancerimagingarchive.net/

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  1. 1.Centro Algoritmi, Universidade do MinhoBragaPortugal
  2. 2.Departamento de Química, Escola de Ciências e TecnologiaUniversidade de ÉvoraÉvoraPortugal
  3. 3.Departamento de InformáticaUniversidade do MinhoBragaPortugal
  4. 4.Farmácia de LamaçãesBragaPortugal
  5. 5.Mediclinic Arabian RanchesDubaiUAE
  6. 6.Dubai Healthcare CityDubaiUAE

Personalised recommendations