Simulations on the Combinatorial Structure of D-Optimal Designs

  • Roberto Fontana
  • Fabio Rapallo
Conference paper
Part of the Springer Proceedings in Mathematics & Statistics book series (PROMS, volume 231)


In this work, we present the results of several simulations on main-effect factorial designs. The goal of such simulations is to investigate the connections between the D-optimality of a design and its geometric structure. By means of a combinatorial object, namely the circuit basis of the model matrix, we show that it is possible to define a simple index that exhibits strong connections with the D-optimality.


Algebraic statistics Circuits Design of experiments Fractional factorial designs Optimal designs 


  1. 1.
    4ti2 team: 4ti2—a software package for algebraic, geometric and combinatorial problems on linear spaces (2008). Accessed 10 Feb 2017
  2. 2.
    Atkinson, A.C., Donev, A.N., Tobias, R.D.: Optimum Experimental Designs, with SAS. Oxford University Press, New York (2007)zbMATHGoogle Scholar
  3. 3.
    Fontana, R., Rapallo, F., Rogantin, M.P.: A characterization of saturated designs for factorial experiments. J. Stat. Plan. Inference 147, 204–211 (2014)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Fontana, R., Rapallo, F., Rogantin, M.P.: \({D}\)-optimal saturated designs: a simulation study. In: Melas, V., Mignani, S., Monari, P., Salmaso, L. (eds.) Topics in Statistical Simulation, pp. 183–190. Springer, Berlin (2014)Google Scholar
  5. 5.
    Goos, P., Jones, B.: Optimal Design of Experiments: A Case Study Approach. Wiley, UK (2011)CrossRefGoogle Scholar
  6. 6.
    Hara, H., Takemura, A., Yoshida, R.: Markov bases for two-way subtable sum problems. J. Pure Appl. Algebra 213(8), 1507–1521 (2009)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Liu, M.Q.: Using discrepancy to evaluate fractional factorial designs. In: Fang, K.T., Niederreiter, H., Hickernell, F.J. (eds.) Monte Carlo and Quasi-Monte Carlo Methods 2000, pp. 357–368. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  8. 8.
    Mitchell, T.J.: Computer construction of D-optimal first-order designs. Technometrics 16(2), 211–220 (1974)MathSciNetzbMATHGoogle Scholar
  9. 9.
    Ohsugi, H.: A dictionary of Gröbner bases of toric ideals. In: Hibi, T. (ed.) Harmony of Gröbner bases and the modern industrial society, pp. 253–281. World Scientific, Hackensack, NJ (2012)Google Scholar
  10. 10.
    Pukelsheim, F.: Optimal Design of Experiments, Classics in Applied Mathematics, vol. 50. Society for Industrial and Applied Mathematics, Philadelphia, PA (2006)Google Scholar
  11. 11.
    Rapallo, F., Yoshida, R.: Markov bases and subbases for bounded contingency tables. Ann. Inst. Stat. Math. 62(4), 785–805 (2010)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Rasch, D., Pilz, J., Verdooren, L., Gebhardt, A.: Optimal Experimental Design with R. CRC Press, FL (2011)zbMATHGoogle Scholar
  13. 13.
    SAS Institute: SAS/QC 9.2 User’s Guide, 2 edn. Cary, NC (2010)Google Scholar
  14. 14.
    Shah, K.R., Sinha, B.K.: Theory of Optimal Designs. Lecture notes in statistics, vol. 54. Springer, Berlin (1989)CrossRefGoogle Scholar
  15. 15.
    Tang, Y., Xu, H., Lin, D.K.: Uniform fractional factorial designs. Ann. Stat. 40(2), 891–907 (2012)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Wynn, H.P.: The sequential generation of \({D}\)-optimum experimental designs. Ann. Math. Stat. 41(5), 1655–1664 (1970)Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department DISMAPolitecnico di TorinoTorinoItaly
  2. 2.Department DISITUniversità del Piemonte OrientaleAlessandriaItaly

Personalised recommendations