Explicit T-optimal Designs for Trigonometric Regression Models

  • Viatcheslav B. Melas
  • Petr V. Shpilev
Conference paper
Part of the Springer Proceedings in Mathematics & Statistics book series (PROMS, volume 231)


This chapter devotes to the problem of constructing T-optimal discriminating designs for Fourier regression models which differ by at most three trigonometric functions. Here we develop the results obtained in a paper (Dette, Melas and Shpilev (2015). T-optimal discriminating designs for Fourier regression models. 1–17) [11] and give a few its generalizations. We consider in detail the case of discriminating between two models where the order of the larger one equals two. For this case, we provide explicit solutions and investigate the dependence of the locally T-optimal discriminating designs on the parameters of the larger model. The results obtained in the chapter can also be applied in classical approximation theory.


T-optimal design Model discrimination Linear optimality criteria Trigonometric models 



The authors would like to thank Lyudmila Kuznetsova, who helped improving the text of this manuscript with considerable language expertise. This work has been supported by St. Petersburg State University (project “Actual problems of design and analysis for regression models,” 6.38.435.2015) and by Russian Foundation for Basic Research (project no. 17-01-00161-a).


  1. 1.
    Atkinson, A.C.: The Non-Uniqueness of Some Designs for Discriminating Between Two Polynomial Models in One Variablel. MODA 9, Advances in model-oriented design and analysis, pp. 9–16 (2010)Google Scholar
  2. 2.
    Atkinson, A.C., Donev, A.N., Tobias, R.D.: Optimum Experimental Designs. Oxford Univ. Press, Oxford (2007)zbMATHGoogle Scholar
  3. 3.
    Atkinson, A.C., Fedorov, V.V.: The designs of experiments for discriminating between two rival models. Biometrika 62, 57–70 (1975)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Atkinson, A.C., Fedorov, V.V.: Optimal design: experiments for discriminating between several models. Biometrika 62, 289–303 (1975)MathSciNetzbMATHGoogle Scholar
  5. 5.
    Biedermann, S., Dette, H., Hoffmann, P.: Constrained optimal discrimination designs for Fourier regression models. Ann. Inst. Stat. Math. 61(1), 143–157 (2009)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Box, G.E.P., Hill, W.J.: Discrimination among mechanistic models. Technometrics 9, 57–71 (1967)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Dette, H.: Discrimination designs for polynomial regression on a compact interval. Ann.Stat. 22, 890–904 (1994)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Dette, H.: Optimal designs for identifying the degree of a polynomial regression. Ann. Stat. 23, 1248–1267 (1995)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Dette, H., Haller, G.: Optimal designs for the identification of the order of a Fourier regression. Ann. Stat. 26, 1496–1521 (1998)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Dette, H., Melas, V.B., Shpilev, P.: \(T\)-optimal designs for discrimination between two polynomial models. Ann. Stat. 40(1), 188–205 (2012)Google Scholar
  11. 11.
    Dette, H., Melas, V.B., Shpilev, P.: \(T\)-optimal discriminating designs for fourier regression models. Comput. Stat. Data Anal. 113, 196–206 (2017)Google Scholar
  12. 12.
    Dette, H., Titoff, S.: Optimal discrimination designs. Ann. Stat. 37(4), 2056–2082 (2009)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Hill, P.D.: A review of experimental design procedures for regression model discrimination. Technometrics 20(1), 15–21 (1978)CrossRefGoogle Scholar
  14. 14.
    Hill, W.J., Hunter, W.G., Wichern, W.D.: A joint design criterion for the dual problem of model discrimination and parameter estimation. Technometrics 10, 145–160 (1968)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Hunter, W.G., Reiner, A.M.: Designs for discriminating between two rival models. Technometrics 7(3), 307–323 (1965)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Kiefer, J.: General equivalence theory for optimum designs (approximate theory). Ann. Stat. 2, 849–879 (1974)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Kitsos, C.P., Titterington, D.M., Torsney, B.: An optimal design problem in rhythmometry. Biometrics 44, 657–671 (1988)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Lestrel, P.E.: Fourier Descriptors and Their Applications in Biology. Cambridge University Press, New York (1997)CrossRefGoogle Scholar
  19. 19.
    López-Fidalgo, J., Tommasi, C., Trandafir, P.: An optimal experimental design criterion for discriminating between non-normal models. J. R. Stat. Soc. B 69, 1–12 (2007)MathSciNetCrossRefGoogle Scholar
  20. 20.
    López-Fidalgo, J., Tommasi, C., Trandafir, P.: Optimal designs for discriminating between some extensions of the Michaelis-Menten model. J. Stat. Plan. Inference 138, 3797–3804 (2008)MathSciNetCrossRefGoogle Scholar
  21. 21.
    McCool, J.I.: Systematic and random errors in least squares estimation for circular contours. Precis. Eng. 1, 215–220 (1979)CrossRefGoogle Scholar
  22. 22.
    Pukelsheim, F.: Optimal Design of Experiments. SIAM, Philadelphia (2006)CrossRefGoogle Scholar
  23. 23.
    Song, D., Wong, W.K.: On the construction of \(g_{rm}\)-optimal designs. Stat. Sinica 9, 263–272 (1999)Google Scholar
  24. 24.
    Spruill, M.C.: Good designs for testing the degree of a polynomial mean. Sankhya, Ser. B 52(1), 67–74 (1990)Google Scholar
  25. 25.
    Stigler, S.: Optimal experimental design for polynomial regression. J. Am. Stat. Assoc. 66, 311–318 (1971)CrossRefGoogle Scholar
  26. 26.
    Studden, W.J.: Some robust-type \(D\)-optimal designs in polynomial regression. J. Am. Stat. Assoc. 77(380), 916–921 (1982)Google Scholar
  27. 27.
    Tommasi, C., López-Fidalgo, J.: Bayesian optimum designs for discriminating between models with any distribution. Comput. Stat. Data Anal. 54(1), 143–150 (2010)MathSciNetCrossRefGoogle Scholar
  28. 28.
    Ucinski, D., Bogacka, B.: \(T\)-optimum designs for discrimination between two multiresponse dynamic models. J. R. Stat. Soc. Ser. B 67, 3–18 (2005)Google Scholar
  29. 29.
    Wiens, D.P.: Robust discrimination designs, with Matlab code. J. R. Stat. Soc. Ser. B 71, 805–829 (2009)MathSciNetCrossRefGoogle Scholar
  30. 30.
    Wiens, D.P.: Robustness of design for the testing of lack of fit and for estimation in binary response models. Comput. Stat. Data Anal. 54, 3371–3378 (2010)MathSciNetCrossRefGoogle Scholar
  31. 31.
    Zen, M.M., Tsai, M.H.: Criterion-robust optimal designs for model discrimination and parameter estimation in Fourier regression models. J. Stat. Plan. Inference 124(2), 475–487 (2004)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of MathematicsSt. Petersburg State UniversitySt. PetersburgRussia

Personalised recommendations