Health Estimates for Some Countries of the Rapid Developing World

Chapter
Part of the The Springer Series on Demographic Methods and Population Analysis book series (PSDE, volume 46)

Abstract

This is a twofold paper, firstly aiming to apply a method for the calculation of healthy life expectancy to the well-known BRIICS countries. This method is based on the μ x distribution of a full life table. However, for many countries of the world such data is virtually absent or problematic, and in reality, only available in the form of an abridged life table. Thus, a method for expanding these life tables into full ones was presented. This method is used by the MORTPAK software of the United Nations. It was found that the use of this application was quite problematic for our purposes. On the other hand, the μ x based approach seems to be very efficient in calculating the temporal trends and levels of healthy life expectancy, given that the quality of data is good.

Keywords

Life expectancy at birth Healthy life expectancy MORTPAK BRIICS 

References

  1. Chiang, C. L. (1965). An index of health: Mathematical models. U.S. Department of HEW, Public Health Service, Publication No. lCXK). Series 2, No. 5.Google Scholar
  2. Global Burden of Disease Study. (2012). Global Burden of Disease Study 2010 (GBD 2010) Disability Weights. Seattle: Institute for Health Metrics and Evaluation (IHME).Google Scholar
  3. Heligman, L., & Pollard, J. H. (1980). The age pattern of mortality. Journal of the Institute of Actuaries, 107, 47–80.CrossRefGoogle Scholar
  4. Kostaki, A. (1992). A nine parameter version of the Heligman-Pollard formula. Mathematical Population Studies, 3(4), 277–288.CrossRefGoogle Scholar
  5. Lee, M.-L. T., & Whitmore, G. A. (2006). Threshold regression for survival analysis: Modeling event times by a stochastic process reaching a boundary. Statistical Science, 21(4), 501–513.CrossRefGoogle Scholar
  6. Murray, C. J. L., Ezzati, M., et al. (2012a). GBD 2010: A multi-investigator collaboration for global comparative descriptive epidemiology. Lancet, 380, 2055–2058.CrossRefGoogle Scholar
  7. Murray, C. J. L., Ezzati, M., et al. (2012b). GBD 2010: Design, definitions, and metrics. Lancet, 380, 2063–2066.CrossRefGoogle Scholar
  8. Murray, C. I., et al. (2015). Global, regional, and national disability-adjusted life years (DALYs) for 306 diseases and injuries and healthy life expectancy (HALE) for 188 countries, 1990–2013: Quantifying the epidemiological transition. Lancet.  https://doi.org/10.1016/S0140-6736(15)61340-X
  9. Salomon, J. A., et al. (2012). Healthy life expectancy for 187 countries, 1990-2010: A systematic analysis for the global burden of disease study. Lancet, 380, 2144–2162.CrossRefGoogle Scholar
  10. Sanders, B. S. (1964). Measuring community health levels. American Journal of Public Health, 54, 1063–1070.CrossRefGoogle Scholar
  11. Skiadas, C. H. (2012a). Life expectancy at birth and forecasts in the Netherlands (females). In C. H. Skiadas & C. Skiadas (Eds.), The health state function of a population (1st ed., pp. 47–67). Athens: National Library of Greece.Google Scholar
  12. Skiadas, C. H. (2012b). The health state function, the force of mortality and other characteristics resulting from the first exit time theory applied to life table data. In C. H. Skiadas & C. Skiadas (Eds.), The health state function of a population (1st ed., pp. 69–92). Athens: National Library of Greece.Google Scholar
  13. Skiadas, C. H., & Skiadas, C. (2012). Estimating the healthy life expectancy from the health state function of a population in connection to the life expectancy at birth. In C. H. Skiadas & C. Skiadas (Eds.), The health state function of a population (1st ed., pp. 97–109). Athens: National Library of Greece.Google Scholar
  14. Skiadas, C. H., & Skiadas, C. (2014a). Demographic and Health indicators for 193 countries of the World Health Organization and the United Nations. Second supplement of the book The Health State Function of a Population, Athens.Google Scholar
  15. Skiadas, C. H., & Skiadas, C. (2014b). First time exit problem. In L. Miodrag (Ed.), International encyclopedia of statistical science (pp. 521–523). Berlin/Heilderberg: Springer.Google Scholar
  16. Skiadas, C. H., & Skiadas, C. (2014c). The first exit time theory applied to life table data: The health state function of a population and other characteristics. Communications in Statistics-Theory and Methods, 34, 1585–1600.CrossRefGoogle Scholar
  17. Skiadas, C. H., & Zafeiris, K. N. (2015a). Comparing WHO and first exit time theory estimations of healthy life expectancy in Europe. In A. Karagrigoriou, T. Oliveira, & C. H. Skiadas (Eds.), Statistical, stochastic and data analysis methods and applications (pp. 261–266). ISAST.Google Scholar
  18. Skiadas, C. H., & Zafeiris, K. N. (2015b). Population aging and healthy life lessons. RELIK 2015 Conference proceedings. Reproduction and human capital. Available at: http://kdem.vse.cz/resources/relik15/download/pdf/45-SKIADAS-CHRISTOS-paper.pdf
  19. Sullivan, D. F. (1966). Conceptual problems in developing an index of health. U.S. Department of HEW, Public Health Service Publication No. 1000, Series 2, No. 17.Google Scholar
  20. Sullivan, D. F. (1971). A single index of mortality and morbidity. HSMHA Health Reports, 86, 347–354.CrossRefGoogle Scholar
  21. Torrance, G. W. (1976). Health status index models: A unified mathematical view. Management Science, 22(9), 990–1001.CrossRefGoogle Scholar
  22. WHO. (2014, March). WHO methods for life expectancy and healthy life expectancy. Global health estimates technical paper WHO/HIS/HSI/GHE/2014.5.Google Scholar
  23. World Health Organization. (2000). The world health report 2000 – Health systems: Improving performance, France. Available at http://www.who.int/whr/2000/en/
  24. World Health Organization. (2001). The world health report 2000 – Mental Health: New understanding, France. Available at http://www.who.int/whr/2001/en/
  25. World Health Organization. (2004). The world health report 2004 – Changing history, France. Available at http://www.who.int/whr/2004/en/
  26. Zafeiris, K. N., & Kostaki, A. (2017). Recent mortality trends in Greece. Communications in Statistics-Theory and Methods doi:  https://doi.org/10.1080/03610926.2017.1353625.
  27. Zafeiris, K. N., & Skiadas, C. H. (2015a). Demographic and heath indicators in the Pomaks of Rhodopi. In R. Manca, S. McClean, & C. H. Skiadas (Eds.), New trends in stochastic modelling and data analysis (pp. 311–324). ISAST.Google Scholar
  28. Zafeiris, K. N., & Skiadas, C. H. (2015b). An application of the first exit time theory in some European populations. In A. Karagrigoriou, T. Oliveira, & C. H. Skiadas (Eds.), Statistical, stochastic and data analysis methods and applications (pp. 229–249). ISAST.Google Scholar
  29. Zafeiris, K. N., & Skiadas, C. H. (2015c). Some methods for the estimations of healthy life expectancy. RELIK 2015 Conference proceedings. Reproduction and human capital. Available at: http://kdem.vse.cz/resources/relik15/download/pdf/34-Zafeiris-Konstantinos-paper.pdf

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Konstantinos N. Zafeiris
    • 1
  • Christos H. Skiadas
    • 2
  1. 1.Department of History and Ethnology, Laboratory of P. AnthropologyDemocritus University of ThraceKomotiniGreece
  2. 2.ManLab, Technical University of CreteChaniaGreece

Personalised recommendations