Skip to main content

Empirical Power Study of the Jackson Exponentiality Test

  • Chapter
  • First Online:
Demography and Health Issues

Abstract

The exponential distribution is an important model, frequently used in areas such as queueing theory, reliability and survival analysis. Therefore, the problem of testing exponentiality is an important subject in Statistics. Many tests have been proposed and in this paper we revisit the exact and asymptotic properties of the Jackson exponentiality test. Using Monte Carlo computations we study the empirical power of the Jackson test and compare it with the power of Lilliefors exponentiality test.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abramowitz, M., & Stegun, I. A. (1972). Handbook of mathematical functions, Applied mathematics series (Vol. 55, 10th ed.). Washington, DC: National Bureau of Standards, US Government Printing Office.

    Google Scholar 

  • Ahsanullah, M., & Hamedani, G. G. (2010). Exponential distribution. New York: Nova Science Publishers.

    Google Scholar 

  • Alizadeh Noughabi, H., & Arghami, N. R. (2011). Testing exponentiality based on characterizations of the exponential distribution. Journal of Statistical Computation and Simulation, 81(11), 1641–1651. https://doi.org/10.1080/00949655.2010.498373.

    Article  Google Scholar 

  • Balakrishnan, N., & Basu, A. P. (1995). Exponential distribution: Theory, methods and applications. Boca Raton: CRC Press.

    Google Scholar 

  • Brilhante, M. F. (2004). Exponentiality versus generalized Pareto - a resistant and robust test. REVSTAT – Statistical Journal, 2(1), 2–13.

    Google Scholar 

  • Caeiro, F., Marques, F. J., Mateus, A., & Atal, S. (2016). A note on the Jackson exponentiality test. AIP Conference Proceedings, 1790, 080005. https://doi.org/10.1063/1.4968686.

    Article  Google Scholar 

  • Doksum, K. A., & Yandell, B. S. (1984). Tests for exponentiality. In P. R. Krishnaiah & P. K. Sen (Eds.), Handbook of statistics 4: Nonparametric methods (Vol. 4, pp. 579–611). Amsterdam: North-Holland.

    Google Scholar 

  • Gibbons, J. D., & Chakraborti, S. (2011). Nonparametric statistical inference. Boca Raton: CRC Press.

    Book  Google Scholar 

  • Henze, N., & Meintanis, S. G. (2005). Recent and classical tests for exponentiality: A partial review with comparisons. Metrica, 61, 29–45.

    Article  Google Scholar 

  • Jackson, O. A. Y. (1967). An analysis of departures from the exponential distribution. Journal of the Royal Statistical Society, B(29), 540–549.

    Google Scholar 

  • Johnson, N. L., Kotz, S., & Balakrishnan, N. (1994). Continuous univariate distributions (Vol. 1, 2nd ed.). New York: Wiley.

    Google Scholar 

  • Kozubowski, T. J., Panorska, A. K., Qeadan, F., Gershunov, A., & Rominger, D. (2009). Testing exponentiality versus Pareto distribution via likelihood ratio. Communications in Statistics – Simulation and Computation, 38(1), 118–139.

    Article  Google Scholar 

  • Lilliefors, H. W. (1969). On the Kolmogorov-Smirnov test for the exponential distribution with mean unknown. Journal of the American Statistical Association, 64(325), 387–389.

    Article  Google Scholar 

  • Stephens, M. A. (1986). Tests for the exponential distribution. In R. B. D’Agostino & M. A. Stephens (Eds.), Goodness-of-fit techniques (pp. 421–459). New York: Marcel Dekker Inc.

    Google Scholar 

  • R Core Team (2015). A language and environment for statistical computing. Vienna: R Foundation for Statistical Computing. URLhttp://www.R-project.org/

Download references

Acknowledgements

This research was partially supported by National Funds through FCT (Fundação para a Ciência e a Tecnologia), through the project UID/MAT/00297/2013 (Centro de Matemática e Aplicações).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Frederico Caeiro .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Caeiro, F., Mateus, A. (2018). Empirical Power Study of the Jackson Exponentiality Test. In: Skiadas, C., Skiadas, C. (eds) Demography and Health Issues. The Springer Series on Demographic Methods and Population Analysis, vol 46. Springer, Cham. https://doi.org/10.1007/978-3-319-76002-5_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-76002-5_19

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-76001-8

  • Online ISBN: 978-3-319-76002-5

  • eBook Packages: Social SciencesSocial Sciences (R0)

Publish with us

Policies and ethics