Air Pollution and Health Risks: A Statistical Analysis Aiming at Improving Air Quality in an Alpine Italian Province

  • Giuliana Passamani
  • Matteo Tomaselli
Part of the The Springer Series on Demographic Methods and Population Analysis book series (PSDE, volume 46)


This paper analyses air pollution levels in an Italian mountain province in order to understand how they can affect air quality and therefore have significant negative effects on health. The analysis considers intra e inter-annual variability in air quality in the province of Trento, after taking into account meteorological conditions. The main purpose is the proposal of an analytical procedure that, starting from the statistical properties of the observed time-series for each of the seven monitoring sites, controls for that part of air pollution that is explained by the meteorological variables using a panel data model, and then moves to analyse its unexplained part and how it is affected by the three main pollutants.


Air pollution Health Air quality Principal component factor analysis Panel data models 


  1. Brunekreef, B., & Holgate, S. T. (2002). Air pollution and health. The Lancet, 360(9341), 1233–1242.CrossRefGoogle Scholar
  2. Burnett, R., Ma, R., Jerrett, M., Goldberg, M. S., Cakmak, S., Pope, C. A., 3rd, & Krewski, D. (2001). The spatial association between community air pollution and mortality: A new method of analyzing correlated geographic cohort data. Environmental Health Perspectives, 109(Suppl 3), 375.CrossRefGoogle Scholar
  3. Chelani, A. B., & Devotta, S. (2006). Air quality forecasting using a hybrid autoregressive and nonlinear model. Atmospheric Environment, 40(10), 1774–1780.CrossRefGoogle Scholar
  4. Chudik, A., & Pesaran, M. H. (2015). Common correlated effects estimation of heterogeneous dynamic panel data models with weakly exogenous regressors. Journal of Econometrics, 188(2), 393–420.CrossRefGoogle Scholar
  5. Ditzen, J. (2016). xtdcce2: Estimating dynamic common correlated effects in stata. Heriot Watt University. URL:
  6. Dominici, F., Daniels, M., Zeger, S. L., & Samet, J. M. (2002). Air pollution and mortality: Estimating regional and national dose-response relationships. Journal of the American Statistical Association, 97(457), 100–111.CrossRefGoogle Scholar
  7. Dominici, F., Sheppard, L., & Clyde, M. (2003). Health effects of air pollution: A statistical review. International Statistical Review, 71(2), 243–276.CrossRefGoogle Scholar
  8. Fontanella, L., Ippoliti, L., & Valentini, P. (2007). Environmental pollution analysis by dynamic structural equation models. Environmetrics, 18, 265–283.CrossRefGoogle Scholar
  9. Forni, M., Hallin, M., Lippi, M., & Reichlin, L. (2000). The generalized dynamic-factor model: Identification and estimation. The Review of Economics and Statistics, 82, 540–554.CrossRefGoogle Scholar
  10. Haines, A., Kovats, R. S., Campbell-Lendrum, D., & Corvalan, C. (2006). Climate change and human health: Impacts, vulnerability and public health. Public Health, 120(7), 585–596.CrossRefGoogle Scholar
  11. Hoek, G., Brunekreef, B., Goldbohm, S., et al. (2002). Association between mortality and indicators of traffic-related air pollution in The Netherlands: A cohort study. Lancet, 360, 1203–1209.CrossRefGoogle Scholar
  12. Janes, H., Sheppard, L., & Shepherd, K. (2008). Statistical analysis of air pollution panel studies: An illustration. Annals of Epidemiology, 18(10), 792–802.CrossRefGoogle Scholar
  13. Jerrett, M., Burnett, R. T., Ma, R., Arden Pop, C., Krewski, D., Newbold, K. B., Thurston, G., Shi, Y., Finkelstein, N., Calle, E. E., & Thun, M. J. (2005). Spatial analysis of air pollution and mortality in Los Angeles. Epidemiology, 16, 727–736.CrossRefGoogle Scholar
  14. Kampa, M., & Castanas, E. (2008). Human health effects of air pollution. Environmental Pollution, 151(2), 362–367.CrossRefGoogle Scholar
  15. Kumar, A., & Goyal, P. (2011). Forecasting of air quality in Delhi using principal component regression technique. Atmospheric Pollution Research, 2(4), 436–444.CrossRefGoogle Scholar
  16. Milionis, A. E., & Davies, T. D. (1994). Regression and stochastic models for air pollution. Review, comments and suggestions. Atmospheric Environment, 28(17), 2801–2810.CrossRefGoogle Scholar
  17. O’Neill, M. S., Jerrett, M., Kawachi, I., Levy, J. I., Cohen, A. J., Gouveia, N., et al. (2003). Health, wealth, and air pollution: Advancing theory and methods. Environmental Health Perspectives, 111(16), 1861–1870.CrossRefGoogle Scholar
  18. Passamani, G., & Masotti, P. (2016). Local atmospheric pollution evolution through time series analysis. Journal of Mathematics and Statistical Science, 2(12), 781–788.Google Scholar
  19. Pesaran, M. H. (2004). General diagnostic tests for cross section dependence in panels (CESifo Working Paper Series No. 1229).Google Scholar
  20. Salcedo, R. L. R., Ferraz, M. A., Alves, C. A., & Martins, F. G. (1999). Time-series analysis of air pollution data. Atmospheric Environment, 33(15), 2361–2372.CrossRefGoogle Scholar
  21. Van der Wal, J. T., & Janssen, L. H. J. M. (2000). Analysis of spatial and temporal variations of PM 10 concentrations in the Netherlands using Kalman filtering. Atmospheric Environment, 34(22), 3675–3687.CrossRefGoogle Scholar
  22. WHO. (2013). Review of evidence on health aspects of air pollution REVIHAAP Project. URL: Scholar
  23. Yu, O., Sheppard, L., Lumley, T., Koenig, J. Q., & Shapiro, G. G. (2000). Effects of ambient air pollution on symptoms of asthma in Seattle-area children enrolled in the CAMP study. Environmental Health Perspectives, 108(12), 1209.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Economics and ManagementUniversity of TrentoTrentoItaly
  2. 2.Economics and Management, Doctoral School of Social SciencesUniversity of TrentoTrentoItaly

Personalised recommendations