Advertisement

Background

  • Emilio Garcia-Fidalgo
  • Alberto Ortiz
Chapter
Part of the Springer Tracts in Advanced Robotics book series (STAR, volume 122)

Abstract

This chapter is intended to provide the reader with a general overview of the most important concepts and terms needed to understand the rest of the book. Main concepts are briefly introduced, making use of examples as they are needed for illustration purposes. More precisely, in the first section, we consider the concept of topological map and define it in a formal way, as well as discuss its main advantages and disadvantages in front of metric approaches. Next, we deal with appearance-based loop closure detection and the factors that more affect the performance of the underlying algorithms.

References

  1. 1.
    Busquets, D.: A multi-agent approach to qualitative navigation in robotics. Ph.D. thesis, Universitat Politècnica de Catalunya (2003)Google Scholar
  2. 2.
    Dudek, G., Jenkin, M.: Computational Principles of Mobile Robotics. Cambridge University Press (2010)Google Scholar
  3. 3.
    Korrapati, H.: Loop closure for topological mapping and navigation with omnidirectional images. Ph.D. thesis, Université Blaise Pascal-Clermont-Ferrand II (2013)Google Scholar
  4. 4.
    Wu, J., Rehg, J.M.: CENTRIST: a visual descriptor for scene categorization. IEEE Trans. Pattern Anal. Mach. Intell. 33(8), 1489–1501 (2011)CrossRefGoogle Scholar
  5. 5.
    Bosch, A., Zisserman, A., Munoz, X.: Representing shape with a spatial pyramid kernel. ACM Int. Conf. Image Video Ret. 401–408 (2007)Google Scholar
  6. 6.
    Fazl-Ersi, E., Tsotsos, J.K.: Histogram of oriented uniform patterns for robust place recognition and categorization. Int. J. Rob. Res. 31(4), 468–483 (2012)CrossRefGoogle Scholar
  7. 7.
    Zhou, L., Zhou, Z., Hu, D.: Scene classification using a multi-resolution bag-of-features model. Patt. Recog. 46(1), 424–433 (2013)CrossRefGoogle Scholar
  8. 8.
    Dalal, N., Triggs, B.: Histograms of oriented gradients for human detection. IEEE Conf. Comput. Vision Pattern Recog. 886–893 (2005)Google Scholar
  9. 9.
    Winters, N., Gaspar, J., Lacey, G., Santos-Victor, J.: Omni-directional vision for robot navigation. In: IEEE Workshop on Omnidirectional Vision, pp. 21–28 (2000)Google Scholar
  10. 10.
    Gaspar, J., Winters, N., Santos-Victor, J.: Vision-based navigation and environmental representations with an omnidirectional camera. IEEE Trans. Robot. Autom. 16(6), 890–898 (2000)CrossRefGoogle Scholar
  11. 11.
    Ulrich, I., Nourbakhsh, I.: Appearance-based place recognition for topological localization. IEEE Int. Conf. Robot. Autom. 2, 1023–1029 (2000)Google Scholar
  12. 12.
    Kosecka, J., Zhou, L., Barber, P., Duric, Z.: Qualitative image based localization in indoors environments. In: IEEE Conf. Comput. Vision Pattern Recog. 2, pp. II–3–II–8 (2003)Google Scholar
  13. 13.
    Bradley, D., Patel, R., Vandapel, N., Thayer, S.: Real-time image-based topological localization in large outdoor environments. IEEE/RSJ Int. Conf. Intell. Robots Syst. 3670–3677 (2005)Google Scholar
  14. 14.
    Weiss, C., Masselli, A.: Fast outdoor robot localization using integral invariants. IEEE Int. Conf. Comput. Vision, 1–10 (2007)Google Scholar
  15. 15.
    Wang, J., Zha, H., Cipolla, R.: Efficient topological localization using orientation adjacency coherence histograms. Int. Conf. Pattern Recog. 271–274 (2006)Google Scholar
  16. 16.
    Pronobis, A., Caputo, B., Jensfelt, P., Christensen, H.: A discriminative approach to robust visual place recognition. In: IEEE/RSJ Int. Conf. Intell. Robots Syst. 3829–3836 (2006)Google Scholar
  17. 17.
    Oliva, A., Torralba, A.: Modeling the shape of the scene: a holistic representation of the spatial envelope. Int. J. Comput. Vision 42(3), 145–175 (2001)CrossRefMATHGoogle Scholar
  18. 18.
    Murillo, A.C., Campos, P., Kosecka, J., Guerrero, J.: Gist vocabularies in omnidirectional images for appearance based mapping and localization. In: Workshop on Omnidirectional Vision, Camera Networks and Non-classical Cameras (RSS) (2010)Google Scholar
  19. 19.
    Sunderhauf, N., Protzel, P.: BRIEF-gist - closing the loop by simple means. IEEE/RSJ Int. Conf. Intell. Robots Syst. 1234–1241 (2011)Google Scholar
  20. 20.
    Chapoulie, A., Rives, P., Filliat, D.: Appearance-based segmentation of indoors and outdoors sequences of spherical views. IEEE Int. Conf. Robot. Autom. 1946–1951 (2013)Google Scholar
  21. 21.
    Lamon, P., Nourbakhsh, I., Jensen, B., Siegwart, R.: Deriving and matching image fingerprint sequences for mobile robot localization. IEEE Int. Conf. Robot. Autom. 2, 1609–1614 (2001)Google Scholar
  22. 22.
    Liu, M., Scaramuzza, D., Pradalier, C., Siegwart, R., Chen, Q.: Scene recognition with omnidirectional vision for topological map using lightweight adaptive descriptors. IEEE/RSJ Int. Conf. Intell. Robots Syst. 116–121 (2009)Google Scholar
  23. 23.
    Liu, M., Siegwart, R.: DP-FACT: towards topological mapping and scene recognition with color for omnidirectional camera. IEEE Int. Conf. Robot. Autom. 3503–3508 (2012)Google Scholar
  24. 24.
    Menegatti, E., Maeda, T., Ishiguro, H.: Image-based memory for robot navigation using properties of omnidirectional images. Rob. Auton. Syst. 47(4), 251–267 (2004)CrossRefGoogle Scholar
  25. 25.
    Menegatti, E., Zoccarato, M., Pagello, E., Ishiguro, H.: Image-based monte carlo localisation with omnidirectional images. Rob. Auton. Syst. 48(1), 17–30 (2004)CrossRefGoogle Scholar
  26. 26.
    Prasser, D., Wyeth, G.: Probabilistic visual recognition of artificial landmarks for simultaneous localization and mapping. IEEE Int. Conf. Robot. Autom. 1, 1291–1296 (2003)Google Scholar
  27. 27.
    Milford, M., Wyeth, G.: Mapping a suburb with a single camera using a biologically inspired slam system. IEEE Trans. Robot. 24(5), 1038–1053 (2008)CrossRefGoogle Scholar
  28. 28.
    Milford, M., Wyeth, G.: SeqSLAM: Visual route-based navigation for sunny summer days and stormy winter nights. IEEE Int. Conf. Robot. Autom. 1643–1649 (2012)Google Scholar
  29. 29.
    Lui, W.L.D., Jarvis, R.: A pure vision-based approach to topological slam. IEEE/RSJ Int. Conf. Intell. Robots Syst. 3784–3791 (2010)Google Scholar
  30. 30.
    Lui, W.L.D., Jarvis, R.: A pure vision-based topological slam system. Int. J. Robt. Res. 31(4), 403–428 (2012)CrossRefGoogle Scholar
  31. 31.
    Badino, H., Huber, D., Kanade, T.: Real-time topometric localization. IEEE Int. Conf. Robot. Autom. 1635–1642 (2012)Google Scholar
  32. 32.
    Lategahn, H., Beck, J., Kitt, B., Stiller, C.: How to learn an illumination robust image feature for place recognition. Intell. Vehic. Symp. 285–291 (2013)Google Scholar
  33. 33.
    Nourani-Vatani, N., Borges, P., Roberts, J., Srinivasan, M.: On the use of optical flow for scene change detection and description. J. Intell. Robot. Syst. 74(3), 817–846 (2014)CrossRefGoogle Scholar
  34. 34.
    Tuytelaars, T., Mikolajczyk, K.: Local Invariant Feature Detectors: A Survey. Found. Trends® Comput. Gr. Vis. 3(3), 177–280 (2007)Google Scholar
  35. 35.
    Schmidt, A., Kraft, M., Kasinski, A.: An evaluation of image feature detectors and descriptors for robot navigation. ICCVG, Computer Vision and Graphic. Lecture Notes in Computer Science, pp. 251–259. Springer, Berlin (2010)Google Scholar
  36. 36.
    Miksik, O., Mikolajczyk, K.: Evaluation of local detectors and descriptors for fast feature matching. Int. Conf. Pattern Recog. 2681–2684 (2012)Google Scholar
  37. 37.
    Mikolajczyk, K., Schmid, C.: A performance evaluation of local descriptors. IEEE Trans. Pattern Anal. Mach. Intell. 27(10), 1615–1630 (2005)CrossRefGoogle Scholar
  38. 38.
    Harris, C., Stephens, M.: A Combined Corner and Edge Detector. In: Alvey Vision Conference, pp. 147–151 (1988)Google Scholar
  39. 39.
    Shi, J., Tomasi, C.: Good features to track. IEEE Conf. Comput. Vision Pattern Recog. 593–600 (1994)Google Scholar
  40. 40.
    Smith, S., Brady, M.: SUSAN - a new approach to low level image processing. Int. J. Comput. Vision 23(1), 45–78 (1997)CrossRefGoogle Scholar
  41. 41.
    Rosten, E., Drummond, T.: Machine learning for high-speed corner detection. Eur. Conf. Comput. Vision, 430–443 (2006)Google Scholar
  42. 42.
    Rosten, E., Porter, R., Drummond, T.: Faster and better: a machine learning approach to corner detection. IEEE Trans. Pattern Anal. Mach. Intell. 32(1), 105–19 (2010)CrossRefGoogle Scholar
  43. 43.
    Rublee, E., Rabaud, V., Konolige, K., Bradski, G.: ORB: an efficient alternative to sift or surf. IEEE Int. Conf. Comput. Vision 95, 2564–2571 (2011)Google Scholar
  44. 44.
    Mair, E., Hager, G.D., Burschka, D., Suppa, M., Hirzinger, G.: Adaptive and generic corner detection based on the accelerated segment test. European Conference on Computer Vision. Lecture Notes in Computer Science, vol. 6312, pp. 183–196. Springer, Berlin (2010)Google Scholar
  45. 45.
    Leutenegger, S., Chli, M., Siegwart, R.: BRISK: Binary robust invariant scalable keypoints. IEEE Int. Conf. Comput. Vision, 2548–2555 (2011)Google Scholar
  46. 46.
    Lowe, D.G.: Distinctive image features from scale-invariant keypoints. Int. J. Comput. Vision 60(2), 91–110 (2004)CrossRefGoogle Scholar
  47. 47.
    Bay, H., Tuytelaars, T., Van Gool, L.: SURF: speeded up robust features. European Conference on Computer Vision. Lecture Notes in Computer Science, vol. 3951, pp. 404–417. Springer, Berlin (2006)Google Scholar
  48. 48.
    Agrawal, M., Konolige, K., Blas, M.R.: CenSurE: center surround extremas for realtime feature detection and matching. European Conference on Computer Vision, vol. 5305, pp. 102–115. Springer, Berlin (2008)Google Scholar
  49. 49.
    Konolige, K., Bowman, J., Chen, J., Mihelich, P., Calonder, M., Lepetit, V., Fua, P.: View-based maps. Int. J. Robt. Res. 29(8), 941–957 (2010)CrossRefGoogle Scholar
  50. 50.
    Ebrahimi, M., Mayol-Cuevas, W.: SUSurE: Speeded up surround extrema feature detector and descriptor for realtime applications. IEEE Conf. Comput. Vision Pattern Recog. 9–14 (2009)Google Scholar
  51. 51.
    Alcantarilla, P.F., Bartoli, A., Davison, A.J.: KAZE features. European Conference on Computer Vision, pp. 214–227. Springer, Berlin (2012)Google Scholar
  52. 52.
    Alcantarilla, P.F., Nuevo, J., Bartoli, A.: Fast explicit diffusion for accelerated features in nonlinear scale spaces. In: British Machine Vision Conference (BMVC) (2013)Google Scholar
  53. 53.
    Morel, J.M., Yu, G.: ASIFT: a new framework for fully affine invariant image comparison. SIAM J. Imaging Sci. 2(2), 438–469 (2009)MathSciNetCrossRefMATHGoogle Scholar
  54. 54.
    Matas, J., Chum, O., Urban, M., Pajdla, T.: Robust wide baseline stereo from maximally stable extremal regions. In: British Machine Vision Conference (BMVC), pp. 1–10 (2002)Google Scholar
  55. 55.
    Ke, Y., Sukthankar, R.: PCA-SIFT: A more distinctive representation for local image descriptors. IEEE Conf. Comput. Vision Pattern Recog. 506–513 (2004)Google Scholar
  56. 56.
    Andreasson, H., Duckett, T.: Topological localization for mobile robots using omnidirectional vision and local features. IFAC Symp. Intell. Auton, Vehic (2008)Google Scholar
  57. 57.
    Tola, E., Lepetit, V., Fua, P.: DAISY: an efficient dense descriptor applied to wide baseline stereo. IEEE Trans. Pattern Anal. Mach. Intell. 32(5), 815–830 (2010)CrossRefGoogle Scholar
  58. 58.
    Sarfraz, M.S., Hellwich, O.: Head Pose Estimation in Face Recognition Across Pose Scenarios. In: International Conference on Computer Vision Theory and Applications, pp. 235–242 (2008)Google Scholar
  59. 59.
    Calonder, M., Lepetit, V., Strecha, C., Fua, P.: BRIEF : binary robust independent elementary features. European Conference on Computer Vision. Lecture Notes in Computer Science, vol. 6314, pp. 778–792. Springer, Berlin (2010)Google Scholar
  60. 60.
    Alahi, A., Ortiz, R., Vandergheynst, P.: FREAK : fast retina keypoint. IEEE Conf. Comput. Vision Pattern Recog. 510–517 (2012)Google Scholar
  61. 61.
    Trzcinski, T., Lepetit, V.: Efficient discriminative projections for compact binary descriptors. European Conference on Computer Vision. Lecture Notes in Computer Science, vol. 7572, pp. 228–242 (2012)Google Scholar
  62. 62.
    Strecha, C., Bronstein, A.M., Bronstein, M.M., Fua, P.: LDAHash: Improved matching with smaller descriptors. IEEE Trans. Pattern Anal. Mach. Intell. 34(1) (2012)Google Scholar
  63. 63.
    Trzcinski, T., Christoudias, C., Fua, P., Lepetit, V.: Boosting binary keypoint descriptors. IEEE Conf. Comput. Vision Pattern Recog. 2874–2881 (2013)Google Scholar
  64. 64.
    Yang, X., Cheng, K.T.: Local difference binary for ultrafast and distinctive feature description. IEEE Trans. Pattern Anal. Mach. Intell. 36(1), 188–94 (2014)CrossRefGoogle Scholar
  65. 65.
    Geng, L.C., Jodoin, P.M., Su, S.Z., Li, S.Z.: CBDF: compressed binary discriminative feature. Neurocomputing 184, 43–54 (2015)CrossRefGoogle Scholar
  66. 66.
    Gionis, A., Indyk, P., Motwani, R.: Similarity search in high dimensions via hashing. In: International Conference on Very Large Data Bases, pp. 518–529 (1999)Google Scholar
  67. 67.
    Silpa-Anan, C., Hartley, R.: Optimised kd-trees for fast image descriptor matching. IEEE Conf. Comput. Vision Pattern Recog. 1–8 (2008)Google Scholar
  68. 68.
    Sivic, J., Zisserman, A.: video google: a text retrieval approach to object matching in videos. IEEE Int. Conf. Comput. Vision, 1470–1477 (2003)Google Scholar
  69. 69.
    Tsai, C.F.: Bag-of-words representation in image annotation: a review. ISRN Artif. Intell. 2012 (2012)Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Mathematics and Computer ScienceUniversity of the Balearic IslandsPalma de MallorcaSpain

Personalised recommendations