Skip to main content

Passive Control of Differential Algebraic Inclusions - General Method and a Simple Example

  • Chapter
  • First Online:
Advanced Topics in Nonsmooth Dynamics

Abstract

In this chapter, we consider a master system consisting of a nonlinear differential inclusion and an algebraic equation of constraint (resulting in a Differential Algebraic Inclusion (DAI) system). This system is coupled to a nonlinear energy sink (NES) corresponding to a one degree-of-freedom essentially nonlinear differential equation. We examine how a resonance capture can lead to a reduced order dynamical system. To obtain this reduced order model, we describe a multiple time scale analysis governed by the introduction of multi-timescales via a small parameter \(\varepsilon \) that is finite and strictly positive. The mass of the NES is small versus the mass of the master system, and it governs a mass ratio defining the small parameter \(\varepsilon \). The first timescale is the fast scale. Introducing the Manevitch complexification leads to the definition of slow time envelope coordinates. These envelope coordinates either do not directly depend on the fast time scale or do not depend on this fast time scale via introduction of the so-called Slow Invariant Manifold (SIM). The slow time dynamics of the master system components is analyzed through introduction of equilibrium points, corresponding to periodic solutions, or singular points (governing bifurcations around the SIM), corresponding to quasi-periodic behaviors. We present a simple example of semi-implicit Differential Algebraic Equation (DAE), including a friction term coupled to a cubic NES. Analytical developments of a 1:1:1 resonance case permit us to predict passive control of a DAI by a NES.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Moreau JJ (1988) Unilateral contact and dry friction in finite freedom dynamics. In: Non-smooth mechanics and applications, CISM courses and lectures, vol 302. Springer, Wien

    Google Scholar 

  2. Brogliato B (1996) Nonsmooth impact mechanics: models, dynamics and control. Springer, London

    Google Scholar 

  3. Jean M (1999) The non-smooth contact dynamics method. Comput Methods Appl Mech Eng 177:235–257

    Article  MathSciNet  Google Scholar 

  4. Glocker C (2001) Set-valued force laws, dynamics of non-smooth systems. Springer, Berlin

    Google Scholar 

  5. Pfeiffer F, Foerg M, Ulbrich H (2006) Numerical aspects of non-smooth multibody dynamics. Comput Methods Appl Mech Eng. 195:6891–6908

    Article  MathSciNet  Google Scholar 

  6. Acary V, Brogliato B (2008) Numerical methods for nonsmooth dynamical dystems: applications in mechanics and electronics. Springer, London

    MATH  Google Scholar 

  7. Leine RI, van de Wouw N (2008) Stability and convergence of mechanical systems with unilateral constraints. Springer, Berlin

    Book  Google Scholar 

  8. Bastien J, Bernardin F, Lamarque C-H (2013) Non smooth deterministic or stochastic discrete dynamical systems: applications to models with friction or impact. Wiley-ISTE, Surrey

    Book  Google Scholar 

  9. Roberson RE (1952) Synthesis of a nonlinear dynamic vibration absorber. J Franklin Inst 254:205–220

    Article  MathSciNet  Google Scholar 

  10. Frahm H, (1911) Device for damping vibrations of bodies. US 989958

    Google Scholar 

  11. Sevin E (1961) On the parametric excitation of pendulum-type vibration absorber. J Appl Mech 28:330–334

    Article  Google Scholar 

  12. Haxton RS, Barr ADS (1972) The autoparametric vibration absorber. J Eng Ind 94:119–125

    Article  Google Scholar 

  13. Rice HJ, McCarith JR (1987) Practical non-linear vibration absorber design. J Sound Vib 116:545–559

    Article  Google Scholar 

  14. Ema S, Marui E (1996) Damping characteristics of an impact damper and its applications. Int J Mach Tools Manuf 36:293–306

    Article  Google Scholar 

  15. Vakakis AF, Gendelman OV (2000) Energy pumping in nonlinear mechanical oscillators: part II-resonance capture. J Appl Mech 68:42–48

    Article  Google Scholar 

  16. Vakakis AF, Gendelman OV, Bergman LA, McFarland DM, Kerschen G, Lee YS (2009) Nonlinear targeted energy transfer in mechanical and structural systems, vol I & II. Springer, Netherlands

    Google Scholar 

  17. Lamarque C-H, Gendelman OV, Ture Savadkoohi A, Etcheverria E (2011) Targeted energy transfer in mechanical systems by means of non-smooth nonlinear energy sink. Acta Mech 221:175–200

    Article  Google Scholar 

  18. Habib G, Kerschen G (2015) Suppression of limit cycle oscillations using the nonlinear tuned vibration absorber. Proc R Soc A-Math Phy 471:0140976

    Google Scholar 

  19. Ture Savadkoohi A, Lamarque C-H (2013) Dynamics of coupled Dahl type and non-smooth systems at different scales of time. Int J Bifurc Chaos 23:1350114

    Article  Google Scholar 

  20. Lamarque C-H, Ture Savadkoohi A (2014) Dynamical behavior of a Bouc-Wen type oscillator coupled to a nonlinear energy sink. Meccanica 49:1917–1928

    Article  MathSciNet  Google Scholar 

  21. Schmidt F, Lamarque C-H (2010) Energy pumping for mechanical systems involving non-smooth Saint-Venant terms. Int J Non Linear Mech 45:866–875

    Article  Google Scholar 

  22. Weiss M, Ture Savadkoohi A, Gendelman OV, Lamarque C-H (2014) Dynamical behavior of a mechanical system including Saint-Venant component coupled to a nonlinear energy sink. Int J Non Linear Mech 63:10–18

    Article  Google Scholar 

  23. Lamarque C-H (2015) Ture savadkoohi: targeted energy transfer between a system with a set of Saint-Venant elements and a nonlinear energy sink. Contin Mech Thermodyn 27:819–833

    Article  MathSciNet  Google Scholar 

  24. Hairer E, Wanner G (1996) Springer series in computational mathematics. In: Solving ordinary differential equations II, stiff and differential-algebraic problems. Springer, Berlin (GMbH)

    Google Scholar 

  25. Manevitch LI (2001) The description of localized normal modes in a chain of nonlinear coupled oscillators using complex variables. Nonlinear Dyn 25:95–109

    Article  MathSciNet  Google Scholar 

  26. Ture Savadkoohi A, Lamarque C-H, Dimitrijevic Z (2012) Vibratory energy exchange between a linear and a nonsmooth system in the presence of the gravity. Nonlinear Dyn 70:1473–1483

    Article  MathSciNet  Google Scholar 

  27. Weiss M, Chenia M, Ture Savadkoohi A, Lamarque C-H, Vaurigaud B, Hammouda A (2016) Multi-scale energy exchanges between an elasto-plastic oscillator and a light nonsmooth system with external pre-stress. Nonlinear Dyn 83:109–135

    Article  MathSciNet  Google Scholar 

  28. Ture Savadkoohi A, Lamarque C-H, Weiss M, Vaurigaud B, Charlemagne S (2016) Analysis of the 1:1 resonant energy exchanges between coupled oscillators with rheologies. Nonlinear Dyn 86:2145–2159

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors want to thank LABEX CELYA (ANR-10-LABX-0060) of the “Université de Lyon,” within the Investissement d’Avenir program (ANR-11-IDEX-0007), operated by the French National Research Agency(ANR).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Claude-Henri Lamarque .

Editor information

Editors and Affiliations

Appendices

APPENDIX 1 - Expressions of F and \(H_0\)

The function F is defined as

$$ \int _0^{\frac{2 \pi }{\omega }} \rho (\dot{v} + \frac{ \varepsilon \dot{w}}{1 + \varepsilon }) \exp (-i \omega \tau _0) d\tau _0.$$

We have

$$\dot{v} + \frac{ \varepsilon \dot{w}}{1 + \varepsilon } = \frac{1}{2} (\phi _1 + \frac{\varepsilon }{1 + \varepsilon } \phi _2)exp(i \omega \tau _0) + c.c.,$$

and we assume that \(\phi _1, \phi _2\) do not depend on \(\tau _0\). Using the polar form \(\phi _j = N_j \exp (i \delta _j), j = 1, 2\), we also have

$$\dot{v} + \frac{ \varepsilon \dot{w}}{1 + \varepsilon } = N_1 \cos (\omega \tau _0 + \delta _1) + \frac{\varepsilon }{1 + \varepsilon } N_2 \cos (\omega \tau _0 + \delta _2).$$

So, we obtain

$$F \frac{2 i \eta }{\pi } \exp (-i \omega t_1^{\star }),$$

where

$$N_1 \cos (\omega t_1^{\star } + \delta _1) + \frac{\varepsilon }{1 + \varepsilon } N_2 \cos (\omega t_1^{\star } + \delta _2) = 0$$

and

$$ t_1^{\star } \in [0, \frac{\pi }{\omega }],$$
$$\begin{aligned} \eta = \hbox {sign}(N_1 \cos (\delta _1) + \frac{\varepsilon }{1 + \varepsilon } N_2 \cos (\delta _2)). \end{aligned}$$
(65)

Finally, we derive

$$\tan (\omega t_1^{\star }) = \frac{N_1 \cos (\delta _1) + \frac{\varepsilon }{1+ \varepsilon } N_2 \cos (\delta _2) }{N_1 \sin (\delta _1) + \frac{\varepsilon }{1+ \varepsilon } N_2 \sin (\delta _2)},$$

and keeping the main orders of \(\varepsilon \), we have

$$\begin{aligned} F (N_1, N_2, \delta _1, \delta _2)=&\frac{2 i}{\pi } \hbox {sign}(\cos (\delta _1)) \exp (-i \delta _1) [1 - \varepsilon i \frac{N_2}{N_1} \sin (\delta _1 - \delta _2) + o(\varepsilon ^2)], \nonumber \\&H_0 (\phi _3, \phi _3^{\star }) = \frac{\beta \phi _3}{2 i \omega _1} = \frac{\beta }{8 i \omega _1^3} \mid \phi _1 \mid ^2 \phi _1. \end{aligned}$$
(66)

APPENDIX 2 - Euler Implicit Numerical Scheme

Let us note that \(X_n = \left( \begin{array}{c}x_{1 n} \\ x_{2 n} \\ x_{3 n} \\ x_{4 n} \\ x_{5 n} \end{array}\right) \), \(X_{n+1} = \left( \begin{array}{c}x_{1 n+1} \\ x_{2 n+1} \\ x_{3 n+1} \\ x_{4 n+1} \\ x_{5n} \end{array}\right) \). Let \(X_0\) be given. For \(n \ge 0\), we have

$$\begin{aligned} \begin{array}{c} aux_n = x_{1 n} - \varDelta t L_1 X_n - \varDelta t \varepsilon (h_0(x_{5 n}) + \gamma (x_{2 n} - x_{4 n})^3 -f_0(t_n)),\\ L_1 X_n = \varepsilon (a_0 + \lambda ) x_{1 n} + \omega _1^2 x_{2 n} -\varepsilon \lambda x_{3 n},\\ x_{1 n+1} = \left\{ \begin{array}{cc} &{} 0 \hbox { if } \mid aux_n \mid \le \varepsilon \alpha _0 \varDelta t \\ &{} aux_n - \varepsilon \alpha _0 \varDelta t \hbox { if } aux_n \ge \varepsilon \alpha _0 \varDelta t \\ &{} aux_n + \varepsilon \alpha _0 \varDelta t \hbox { if } aux_n \le - \varepsilon \alpha _0 \varDelta t \end{array},\right. \\ x_{2 n+1} = x_{2 n} + \varDelta t x_{1 n}, \\ x_{3 n+1} = x_{3 n} - \varDelta t (L_2 X_n + \gamma (x_{4 n} - x_{2 n})^3) = x_{3 n} - \varDelta t ( x_{1 n} + \gamma (x_{4 n} - x_{2 n})^3), \\ x_{4 n+1} = x_{4 n} + \varDelta t x_{3 n}, \\ x_{5 n+1} = x_{5 n} + \varDelta t x_{2 n}^2 x_{1 n}. \end{array} \end{aligned}$$

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Lamarque, CH., Ture Savadkoohi, A. (2018). Passive Control of Differential Algebraic Inclusions - General Method and a Simple Example. In: Leine, R., Acary, V., Brüls, O. (eds) Advanced Topics in Nonsmooth Dynamics. Springer, Cham. https://doi.org/10.1007/978-3-319-75972-2_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-75972-2_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-75971-5

  • Online ISBN: 978-3-319-75972-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics