Advertisement

An Overview of Traffic Control Schemes for Freeway Systems

  • Antonella Ferrara
  • Simona Sacone
  • Silvia Siri
Chapter
Part of the Advances in Industrial Control book series (AIC)

Abstract

Some of the criticalities associated with traffic phenomena in freeway networks can be mitigated or even eliminated with suitable control strategies. The most important and evident drawback of traffic is surely congestion and, consequently, congestion reduction is one of the main objectives of traffic control policies. More recently, other control objectives have become relevant, including reduction of fuel consumptions and pollutant emissions, number of accidents, noise and so on. Researchers have investigated traffic control approaches for some decades and are still working on developing control schemes that, on the one hand, are more and more effective for improving the performance of the traffic system and, on the other hand, are easily implementable in real contexts.

References

  1. 1.
    Chien C-C, Zhang Y, Ioannou PA (1997) Traffic density control for automated highway systems. Automatica 33:1273–1285MathSciNetCrossRefGoogle Scholar
  2. 2.
    Alvarez L, Horowitz R, Li P (1999) Traffic flow control in automated highway systems. Control Eng Pract 7:1071–1078CrossRefGoogle Scholar
  3. 3.
    Baskar LD, De Schutter B, Hellendoorn H (2013) Optimal routing for automated highway systems. Transp Res Part C 30:1–22CrossRefGoogle Scholar
  4. 4.
    Roncoli C, Papageorgiou M, Papamichail I (2015) Traffic flow optimisation in presence of vehicle automation and communication systems - part II: optimal control for multi-lane motorways. Transp Res Part C 57:260–275CrossRefGoogle Scholar
  5. 5.
    Roncoli C, Papamichail I, Papageorgiou M (2016) Hierarchical model predictive control for multi-lane motorways in presence of vehicle automation and communication systems. Transp Res Part C 62:117–132CrossRefGoogle Scholar
  6. 6.
    Spiliopoulou A, Perraki G, Papageorgiou M, Roncoli C (2017) Exploitation of ACC systems towards improved traffic flow efficiency on motorways. In: Proceedings of the 5th IEEE international conference on models and technologies for intelligent transportation systems, pp 37–43Google Scholar
  7. 7.
    Rios-Torres J, Malikopoulos AA (2017) Automated and cooperative vehicle merging at highway on-ramps. IEEE Trans Intell Transp Syst 18:780–789CrossRefGoogle Scholar
  8. 8.
    Rios-Torres J, Malikopoulos AA (2017) A survey on the coordination of connected and automated vehicles at intersections and merging at highway on-ramps. IEEE Trans Intell Transp Syst 18:1066–1077CrossRefGoogle Scholar
  9. 9.
    Wattleworth JA (1965) Peak-period analysis and control of a freeway system. Highway Res Rec 157 (1965)Google Scholar
  10. 10.
    Yuan LS, Kreer JB (1971) Adjustment of freeway ramp metering rates to balance entrance ramp queues. Transp Res 5:127–133CrossRefGoogle Scholar
  11. 11.
    Kim K, Cassidy MJ (2012) A capacity-increasing mechanism in freeway traffic. Transp Res Part B 46:1260–1272CrossRefGoogle Scholar
  12. 12.
    Papageorgiou M, Kotsialos A (2002) Freeway ramp metering: an overview. IEEE Trans Intell Transp Syst 3:271–281CrossRefGoogle Scholar
  13. 13.
    Horowitz R, May A, Skabardonis A, Varaiya P, Zhang M, Gomes G, Muñoz L, Sun X, Sun D (2005) Design, field implementation and evaluation of adaptive ramp metering algorithms. California PATH Research Report UCB-ITS-PRR-2005-2. University of California, BerkeleyGoogle Scholar
  14. 14.
    Papageorgiou M, Kosmatopoulos E, Papamichail I (2008) Effects of variable speed limits on motorway traffic flow. Transp Res Rec 2047CrossRefGoogle Scholar
  15. 15.
    Soriguera F, Martínez I, Sala M, Menéndez M (2017) Effects of low speed limits on freeway traffic flow. Transp Res Part C 77:257–274CrossRefGoogle Scholar
  16. 16.
    Knoop VL, Duret A, Buisson C, van Arem B (2010) Lane distribution of traffic near merging zones influence of variable speed limits. In: Proceedings of the 13th international IEEE annual conference on intelligent transportation systems, pp 485–490Google Scholar
  17. 17.
    Gazis DC, Foote RS (1969) Surveillance and control of tunnel traffic by an on-line digital computer. Transp Sci 3:255–275CrossRefGoogle Scholar
  18. 18.
    Mc Calden MS (1984) A traffic management system for the San Francisco-Oakland Bay Bridge. ITE J 54:46–51Google Scholar
  19. 19.
    Soole DW, Watson BC, Fleiter JJ (2013) Effects of average speed enforcement on speed compliance and crashes: a review of the literature. Accid Anal Prev 54:46–56CrossRefGoogle Scholar
  20. 20.
    Vanlommel M, Houbraken M, Audenaert P, Logghe S, Pickavet M, De Maeyer P (2015) An evaluation of section control based on floating car data. Transp Res Part C 58:617–627CrossRefGoogle Scholar
  21. 21.
    Ben-Akiva M, Bottom J, Ramming MS (2001) Route guidance and information systems. Proc Inst Mech Eng Part I J Syst Control Eng 215:317–324CrossRefGoogle Scholar
  22. 22.
    Schmitt EJ, Jula H (2006) Vehicle route guidance systems: classification and comparison. In: Proceedings of the IEEE intelligent transportation systems conference, pp 242–247Google Scholar
  23. 23.
    Kontorinaki M, Karafyllis I, Papageorgiou M (2017) Global exponential stabilisation of acyclic traffic networks. Int J Control (2017). Published on line,  https://doi.org/10.1080/00207179.2017.1362114
  24. 24.
    Papageorgiou M, Papamichail I (2008) Overview of traffic signal operation policies for ramp metering. Transp Res Rec 2047:28–36CrossRefGoogle Scholar
  25. 25.
    Isaksen L, Payne HJ (1973) Freeway traffic surveillance and control. Proc IEEE 61:526–536CrossRefGoogle Scholar
  26. 26.
    Papageorgiou M, Diakaki C, Dinopoulou V, Kotsialos A, Wang Y (2003) Review of road traffic control strategies. Proc IEEE 91:2043–2067CrossRefGoogle Scholar
  27. 27.
    Papamichail I, Papageorgiou M, Wang Y (2007) Motorway traffic surveillance and control. Eur J Control 13:297–319CrossRefGoogle Scholar
  28. 28.
    Haj-Salem H, Papageorgiou M (1995) Ramp metering impact on urban corridor traffic: field results. Transp Res Part A 29:303–319CrossRefGoogle Scholar
  29. 29.
    Masher DP, Ross DW, Wong PJ, Tuan PL, Zeidler HM, Petracek S (1975) Guidelines for design and operation of ramp control systems. Standford Research Institute Report NCHRP 3-22, SRI Project 3340, CaliforniaGoogle Scholar
  30. 30.
    Papageorgiou M, Hadj-Salem H, Blosseville J-M (1991) ALINEA: a local feedback control law for on-ramp metering. Transp Res Rec 1320:58–64Google Scholar
  31. 31.
    Papageorgiou M, Kosmatopoulos E, Papamichail I, Wang Y (2007) ALINEA maximises motorway throughput - an answer to flawed criticism. TEC Mag 271–276Google Scholar
  32. 32.
    Papamichail I, Papageorgiou M (2011) Balancing of queues or waiting times on metered dual-branch on-ramps. IEEE Trans Intell Transp Syst 12:438–452CrossRefGoogle Scholar
  33. 33.
    Smaragdis E, Papageorgiou M (1856) Series of new local ramp metering strategies. Transp Res Rec 2003:74–86Google Scholar
  34. 34.
    Smaragdis E, Papageorgiou M, Kosmatopoulos E (2004) A flow-maximizing adaptive local ramp metering strategy. Transp Res Part B 38:251–270CrossRefGoogle Scholar
  35. 35.
    Wang Y, Kosmatopoulos EB, Papageorgiou M, Papamichail I (2014) Local ramp metering in the presence of a distant downstream bottleneck: theoretical analysis and simulation study. IEEE Trans Intell Transp Syst 15:2024–2039CrossRefGoogle Scholar
  36. 36.
    Kan Y, Wang Y, Papageorgiou M, Papamichail I (2016) Local ramp metering with distant downstream bottlenecks: a comparative study. Transp Res Part C 62:149–170CrossRefGoogle Scholar
  37. 37.
    Wang Y, Papageorgiou M, Gaffney J, Papamichail I, Guo J (2010) Local ramp metering in the presence of random-location bottlenecks downstream of a metered on-ramp. In: Proceedings of the 13th international IEEE conference on intelligent transportation systems, pp 1462–1467Google Scholar
  38. 38.
    Hou Z, Xu J-X, Yan J (2008) An iterative learning approach for density control of freeway traffic flow via ramp metering. Transp Res Part C 16:71–97CrossRefGoogle Scholar
  39. 39.
    Hou Z, Xu X, Yan J, Xu J-X, Xioung G (2011) A complementary modularized ramp metering approach based on iterative learning control and ALINEA. IEEE Trans Intell Transp Syst 12:1305–1318CrossRefGoogle Scholar
  40. 40.
    Carlson RC, Papamichail I, Papageorgiou M, Messmer A (2010) Optimal mainstream traffic flow control of large-scale motorway networks. Transp Res Part C 18:193–212CrossRefGoogle Scholar
  41. 41.
    Carlson RC, Papamichail I, Papageorgiou M, Messmer A (2010) Optimal motorway traffic flow control involving variable speed limits and ramp metering. Transp Sci 44:238–253CrossRefGoogle Scholar
  42. 42.
    Zhang J, Chang H, Ioannou PA (2006) A simple roadway control system for freeway traffic. In: Proceedings of the American control conference, pp 4900–4905Google Scholar
  43. 43.
    Hegyi A, Hoogendoorn SP, Schreuder M, Stoelhorst H, Viti F (2008) SPECIALIST: a dynamic speed limit control algorithm based on shock wave theory. In: Proceedings of the 11th international IEEE conference on intelligent transportation systems, pp 827–832Google Scholar
  44. 44.
    Chen D, Ahn S, Hegyi A (2014) Variable speed limit control for steady and oscillatory queues at fixed freeway bottlenecks. Transp Res Part B 70:340–358CrossRefGoogle Scholar
  45. 45.
    Müller ER, Carlson RC, Kraus W, Papageorgiou M (2015) Microsimulation analysis of practical aspects of traffic control with variable speed limits. IEEE Trans Intell Transp Syst 16:512–523CrossRefGoogle Scholar
  46. 46.
    Jin H-Y, Jin W-L (2015) Control of a lane-drop bottleneck through variable speed limits. Transp Res Part C 58:568–584CrossRefGoogle Scholar
  47. 47.
    Carlson RC, Papamichail I, Papageorgiou M (2011) Local feedback-based mainstream traffic flow control on motorways using variable speed limits. IEEE Trans Intell Transp Syst 12:1261–1276CrossRefGoogle Scholar
  48. 48.
    Iordanidou G-R, Roncoli C, Papamichail I, Papageorgiou M (2015) Feedback-based mainstream traffic flow control for multiple bottlenecks on motorways. IEEE Trans Intell Transp Syst 16:610–621Google Scholar
  49. 49.
    Papageorgiou M, Papamichail I, Spiliopoulou AD, Lentzakis AF (2008) Real-time merging traffic control with applications to toll plaza and work zone management. Transp Res Part C 16:535–553CrossRefGoogle Scholar
  50. 50.
    Tympakianaki A, Spiliopoulou A, Kouvelas A, Papamichail I, Papageorgiou M, Wang Y (2014) Real-time merging traffic control for throughput maximization at motorway work zones. Transp Res Part C 44:242–252CrossRefGoogle Scholar
  51. 51.
    Wardrop JG (1952) Some theoretical aspects of road traffic research. Proc Inst Civ Eng 1:325–378Google Scholar
  52. 52.
    Vreeswijk JD, Landman RL, van Berkum EC, Hegyi A, Hoogendoorn SP, van Arem B (2015) Improving the road network performance with dynamic route guidance by considering the indifference band of road users. IET Intell Transp Syst 9:897–906CrossRefGoogle Scholar
  53. 53.
    van Essen M, Thomas T, van Berkum E, Chorus C (2016) From user equilibrium to system optimum: a literature review on the role of travel information, bounded rationality and non-selfish behaviour at the network and individual levels. Transp Rev 36:527–548Google Scholar
  54. 54.
    Messmer A, Papageorgiou M (1994) Automatic control methods applied to freeway network traffic. Automatica 30:691–702MathSciNetCrossRefGoogle Scholar
  55. 55.
    Pavlis Y, Papageorgiou M (1999) Simple decentralized feedback strategies for route guidance in traffic networks. Transp Sci 33:264–278CrossRefGoogle Scholar
  56. 56.
    Wang Y, Papageorgiou M, Messmer A (2001) Feedback and iterative routing strategies for freeway networks. In: Proceedings of the IEEE international conference on control applications, pp 1162–1167Google Scholar
  57. 57.
    Mahmassani HS, Peeta S (1993) Network performance under system optimal and user equilibrium dynamic assignments: implications for advanced traveller information systems. Transp Res Rec 1408:83–93Google Scholar
  58. 58.
    Wang Y, Messmer A, Papageorgiou M (2001) Freeway network simulation and dynamic traffic assignment using METANET tools. Transp Res Rec 1776:178–188CrossRefGoogle Scholar
  59. 59.
    Wang Y, Papageorgiou M, Messmer A (2002) A predictive feedback routing control strategy for freeway network traffic. In: Proceedings of the American control conference, pp 3606–3611Google Scholar
  60. 60.
    Messmer A, Papageorgiou M, Mackenzie N (1998) Automatic control of variable message signs in the interurban scottish highway network. Transp Res Part C 6:173–187CrossRefGoogle Scholar
  61. 61.
    Schelling I, Hegyi A, Hoogendoorn SP (2011) SPECIALIST-RM: integrated variable speed limit control and ramp metering based on shock wave theory. In: Proceedings of the 14th international IEEE conference on intelligent transportation systems, pp 2154–2159Google Scholar
  62. 62.
    Carlson RC, Papamichaill I, Papageorgiou M (2014) Integrated feedback ramp metering and mainstream traffic flow control on motorways using variable speed limits. Transp Res Part C 46:209–221CrossRefGoogle Scholar
  63. 63.
    Hou Z, Xu J-X, Zhong H (2007) Freeway traffic control using iterative learning control-based ramp metering and speed signaling. IEEE Trans Veh Technol 56:466–477CrossRefGoogle Scholar
  64. 64.
    Zhang Y, Ioannou PA (2017) Combined variable speed limit and lane change control for highway traffic. IEEE Trans Intell Transp Syst 18:1812–1823CrossRefGoogle Scholar
  65. 65.
    Papageorgiou M, Blosseville J-M, Hadj-Salem H (1990) Modeling and real-time control of traffic flow on the southern part of Boulevard Périphérique in Paris - Part II: coordinated on-ramp metering. Transp Res Part A 24:361–370CrossRefGoogle Scholar
  66. 66.
    Bogenberger K, May AD (1999) Advanced coordinated traffic responsive ramp metering strategies. California PATH Working Paper, University of California, BerkeleyGoogle Scholar
  67. 67.
    Hadi MA (2005) Coordinated traffic responsive ramp metering strategies - an assessment based on previous studies. In: Proceedings of the world congress on intelligent transport systemsGoogle Scholar
  68. 68.
    Papamichail I, Papageorgiou M (2008) Traffic-responsive linked ramp-metering control. IEEE Trans Intell Transp Syst 9:111–121CrossRefGoogle Scholar
  69. 69.
    Tu H, Li H, Wang Y, Sun L (2014) When to control the ramps on freeway corridors? A novel stability-and-MFD-based approach. IEEE Trans Intell Transp Syst 15:2572–2582CrossRefGoogle Scholar
  70. 70.
    Bhouri N, Haj-Salem H, Kauppila J (2013) Isolated versus coordinated ramp metering: field evaluation results of travel time reliability and traffic impact. Transp Res Part C 28:155–167CrossRefGoogle Scholar
  71. 71.
    Iordanidou G-R, Papamichail I, Roncoli C, Papageorgiou M (2017) Feedback-based integrated motorway traffic flow control with delay balancing. IEEE Trans Intell Transp Syst 18:2319–2329CrossRefGoogle Scholar
  72. 72.
    Bryson AE, Ho Y-C (1975) Applied optimal control: optimization, estimation and control. Taylor & Francis Group, New YorkGoogle Scholar
  73. 73.
    Athans M, Falb PL (2007) Optimal control: an introduction to the theory and its applications. Dover Publications, Mineola, New YorkzbMATHGoogle Scholar
  74. 74.
    Lewis FL, Vrabie DL, Syrmos VL (2012) Optimal control, 3rd edn. Wiley, Hoboken, New JerseyCrossRefGoogle Scholar
  75. 75.
    Bayen AM, Raffard RL, Tomlin CJ (2004) Network congestion alleviation using adjoint hybrid control: application to highways. In: Alur R, Pappas GJ (eds) Hybrid systems: computation and control. Springer, Berlin, pp 95–110CrossRefGoogle Scholar
  76. 76.
    Li Y, Canepa E, Claudel C (2014) Optimal control of scalar conservation laws using linear/quadratic programming: application to transportation networks. IEEE Trans Control Netw Syst 1:28–39MathSciNetCrossRefGoogle Scholar
  77. 77.
    Zhang H, Ritchie S, Recker W (1996) Some general results on the optimal ramp metering control problem. Transp Res Part C 4:51–69CrossRefGoogle Scholar
  78. 78.
    Zhang HM, Recker WW (1999) On optimal freeway ramp control policies for congested traffic corridors. Transp Res Part B 33:417–436CrossRefGoogle Scholar
  79. 79.
    Zhang HM, Ritchie SG, Jayakrishnan R (2001) Coordinated traffic-responsive ramp control via nonlinear state feedback. Transp Res Part C 9:337–352CrossRefGoogle Scholar
  80. 80.
    Gomes G, Horowitz R (2006) Optimal freeway ramp metering using the asymmetric cell transmission model. Transp Res Part C 14:244–262CrossRefGoogle Scholar
  81. 81.
    Muralidharan A, Horowitz R (2012) Optimal control of freeway networks based on the link node cell transmission model. In: Proceedings of the American control conference, pp 5769–5774Google Scholar
  82. 82.
    Kotsialos A, Papageorgiou M, Middelham F (2001) Optimal coordinated ramp metering with AMOC. Transp Res Rec 1748:55–65CrossRefGoogle Scholar
  83. 83.
    Papageorgiou M, Kotsialos A (2004) Nonlinear optimal control applied to coordinated ramp metering. IEEE Trans Intell Transp Syst 12:920–933Google Scholar
  84. 84.
    Kotsialos A, Papageorgiou M, Mangeas M, Haj-Salem H (2002) Coordinated and integrated control of motorway networks via non-linear optimal control. Transp Res Part C 10:65–84CrossRefGoogle Scholar
  85. 85.
    Papageorgiou M, Marinaki M, Typaldos P, Makantasis K (2016) A feasible direction algorithm for the numerical solution of optimal control problems - extended version, internal report no 2016–26. Chania, GreeceGoogle Scholar
  86. 86.
    Riedmiller M, Braun H (1993) A directive adaptive method for faster backpropagation learning: the RPROP algorithm. In: Proceedings of the IEEE international conference, neural networks pp 586–591Google Scholar
  87. 87.
    Pasquale C, Papamichail I, Roncoli C, Sacone S, Siri S, Papageorgiou M (2015) Two-class freeway traffic regulation to reduce congestion and emissions via nonlinear optimal control. Transp Res Part C 55:85–99CrossRefGoogle Scholar
  88. 88.
    Jamshidnejad A, Papamichail I, Papageorgiou M, De Schutter B (2017) Sustainable model-predictive control in urban traffic networks: efficient solution based on general smoothening methods. IEEE Trans Control Syst Technol, published on line,  https://doi.org/10.1109/TCST.2017.2699160
  89. 89.
    Di Febbraro A, Parisini T, Sacone S, Zoppoli R (2001) Neural approximations for feedback optimal control of freeway systems. IEEE Trans Veh Technol 50:302–313CrossRefGoogle Scholar
  90. 90.
    Reilly J, Samaranayake S, Delle Monache ML, Krichene W, Goatin P, Bayen AM (2015) Adjoint-based optimization on a network of discretized scalar conservation laws with applications to coordinated ramp metering. J Optim Theory Appl 167:733–760MathSciNetCrossRefGoogle Scholar
  91. 91.
    Samaranayake S, Reilly J, Krichene W, Lespiau JB, Delle Monache ML, Goatin P, Bayen A (2015) Discrete-time system optimal dynamic traffic assignment (SO-DTA) with partial control for horizontal queuing networks. In: Proceedings of the American control conference, pp 663–670Google Scholar
  92. 92.
    Reilly J, Martin S, Payer M, Bayen AM (2016) Creating complex congestion patterns via multi-objective optimal freeway traffic control with application to cyber-security. Transp Res Part B 91:366–382CrossRefGoogle Scholar
  93. 93.
    Pasquale C, Anghinolfi D, Sacone S, Siri S, Papageorgiou M (2016) A comparative analysis of solution algorithms for nonlinear freeway traffic control problems. In: Proceedings of the 19th IEEE intelligent transportation systems conference, pp 1773–1778Google Scholar
  94. 94.
    Alessandri A, Di Febbraro A, Ferrara A, Punta E (1998) Optimal control of freeways via speed signalling and ramp metering. Control Eng Pract 6:771–780CrossRefGoogle Scholar
  95. 95.
    Chiang Y-H, Juang J-C (2008) Control of freeway traffic flow in unstable phase by H\(_\infty \) theory. IEEE Trans Intell Transp Syst 9:193–208CrossRefGoogle Scholar
  96. 96.
    Zhong RX, Sumalee A, Pan TL, Lam WHK (2014) Optimal and robust strategies for freeway traffic management under demand and supply uncertainties: an overview and general theory. Transportmetrica A: Transp Sci 10:849–877Google Scholar
  97. 97.
    Como G, Lovisari E, Savla K (2016) Convexity and robustness of dynamic traffic assignment and freeway network control. Transp Res Part B 91:446–465CrossRefGoogle Scholar
  98. 98.
    Maciejowski J (2002) Predictive control with constraints. Prentice Hall, Harlow, UKzbMATHGoogle Scholar
  99. 99.
    Camacho EF, Bordons C (2007) Model predictive control. Springer, LondonCrossRefGoogle Scholar
  100. 100.
    Rawlings JB, Mayne DQ (2009) Model predictive control: theory and design. Nob Hill Publishing, Madison, WisconsinGoogle Scholar
  101. 101.
    Burger M, van den Berg M, Hegyi A, De Schutter B, Hellendoorn J (2013) Considerations for model-based traffic control. Transp Res Part C 35:1–19CrossRefGoogle Scholar
  102. 102.
    Hegyi A, De Schutter B, Hellendoorn J (2005) Optimal coordination of variable speed limits to suppress shock waves. IEEE Trans Intell Transp Syst 6:102–112CrossRefGoogle Scholar
  103. 103.
    Bellemans T, De Schutter B, De Moor B (2006) Model predictive control for ramp metering of motorway traffic: a case study. Control Eng Pract 14:757–767CrossRefGoogle Scholar
  104. 104.
    Hegyi A, De Schutter B, Hellendoorn H (2005) Model predictive control for optimal coordination of ramp metering and variable speed limits. Transp Res Part C 13:185–209CrossRefGoogle Scholar
  105. 105.
    Hegyi A, Burger M, De Schutter B, Hellendoorn J, van den Boom TJJ (2007) Towards a practical application of model predictive control to suppress shock waves on freeways. In: Proceedings of the European control conference, pp 1764–1771Google Scholar
  106. 106.
    Haddad J, Ramezani M, Geroliminis N (2013) Cooperative traffic control of a mixed network with two urban regions and a freeway. Transp Res Part B 54:17–36CrossRefGoogle Scholar
  107. 107.
    Frejo JRD, Núñez A, De Schutter B, Camacho EF (2014) Hybrid model predictive control for freeway traffic using discrete speed limit signals. Transp Res Part C 46:309–325CrossRefGoogle Scholar
  108. 108.
    Frejo JRD, Papamichail I, Papageorgiou M, Camacho EF (2016) Macroscopic modeling and control of reversible lanes on freeways. IEEE Trans Intell Transp Syst 17:948–959CrossRefGoogle Scholar
  109. 109.
    Papamichail I, Kotsialos A, Margonis I, Papageorgiou M (2010) Coordinated ramp metering for freeway networks - a model-predictive hierarchical control approach. Transp Res Part C 18:311–331CrossRefGoogle Scholar
  110. 110.
    Sacone S, Siri S (2012) A control scheme for freeway traffic systems based on hybrid automata. Discret Event Dyn Syst 22:3–25MathSciNetCrossRefGoogle Scholar
  111. 111.
    Sacone S, Siri S, Torriani F (2012) A hybrid automaton for multi-class ramp metering in freeway systems. In: Proceedings of the 4th IFAC conference on analysis and design of hybrid systems, pp 344–349CrossRefGoogle Scholar
  112. 112.
    Muralidharan A, Horowitz R (2015) Computationally efficient model predictive control of freeway networks. Transp Res Part C 58:532–553CrossRefGoogle Scholar
  113. 113.
    Han Y, Hegyi A, Yuan Y, Hoogendoorn S, Papageorgiou M, Roncoli C (2017) Resolving freeway jam waves by discrete first-order model-based predictive control of variable speed limits. Transp Res Part C 77:405–420CrossRefGoogle Scholar
  114. 114.
    Ferrara A, Nai Oleari A, Sacone S, Siri S (2015) Freeways as systems of systems: a distributed model predictive control scheme. IEEE Syst J 9:312–323CrossRefGoogle Scholar
  115. 115.
    Ferrara A, Sacone S, Siri S (2014) Simulation-based assessment of natural robustness of freeway traffic systems controlled via MPC. In Proceedings of the 22nd Mediterranean conference on control and automation, pp 1255–1260Google Scholar
  116. 116.
    Ferrara A, Sacone S, Siri S (2014) Time-varying triggering conditions for the robust control of freeway systems. In: Proceedings of the 53rd IEEE conference on decision and control, pp 1741–1746Google Scholar
  117. 117.
    Liu S, Sadowska A, Frejo JRD, Núñez A, Camacho EF, Hellendoorn H, De Schutter B (2016) Robust receding horizon parameterized control for multi-class freeway networks: a tractable scenario-based approach. Int J Robust Nonlinear Control 26:1211–1245MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Electrical, Computer and Biomedical EngineeringUniversity of PaviaPaviaItaly
  2. 2.Department of Informatics, Bioengineering, Robotics and Systems EngineeringUniversity of GenoaGenoaItaly

Personalised recommendations