Skip to main content

Second-Order Macroscopic Traffic Models

  • Chapter
  • First Online:
Freeway Traffic Modelling and Control

Part of the book series: Advances in Industrial Control ((AIC))

Abstract

Second-order macroscopic traffic flow models introduce a second dynamic equation compared to first-order models, i.e. the equation describing the dynamics of the mean speed of vehicles. Second-order models were introduced in the 70s as continuous models, the earliest one being the so-called Payne–Whitham model. Some critiques arose on this class of models, focusing in particular on the dissimilarity between the flow of vehicles and the flow of molecules in fluids or gases. This criticism encouraged new developments of second-order models, leading to the model proposed by Aw and Rascle, and a similar model developed independently by Zhang. A discrete version of second-order models has been elaborated in the 90s, known as METANET. This discrete model, conceived both for freeway stretches and for networks, is very widespread in the engineering field and particularly suitable for prediction and control purposes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Payne HJ (1971) Models of freeway traffic and control. Math Model Public Syst 28:51–61

    Google Scholar 

  2. Whitham GB (1974) Linear and nonlinear waves. Wiley, New York

    MATH  Google Scholar 

  3. Daganzo CF (1995) Requiem for second-order fluid approximations of traffic flow. Transp Res Part B 29:277–286

    Article  Google Scholar 

  4. Aw A, Rascle M (2000) Resurrection of “second order” models of traffic flow. SIAM J Appl Math 60:916–938

    Article  MathSciNet  Google Scholar 

  5. Zhang HM (2002) A non-equilibrium traffic model devoid of gas-like behavior. Transp Res Part B 36:275–290

    Article  Google Scholar 

  6. Garavello M, Piccoli B (2016) Traffic flow on networks. American Institute of Mathematical Sciences

    Google Scholar 

  7. Garavello M, Han K, Piccoli B (2006) Models for vehicular traffic on networks. American Institute of Mathematical Sciences

    Google Scholar 

  8. Helbing D, Johansson AF (2009) On the controversy around Daganzo’s requiem for and Aw-Rascle’s resurrection of second-order traffic flow models. Eur Phys J 69:549–562

    Google Scholar 

  9. Greenberg JM (2001) Extensions and amplifications of a traffic model of Aw and Rascle. SIAM J Appl Math 62:729–745

    Article  MathSciNet  Google Scholar 

  10. Rascle M (2002) An improved macroscopic model of traffic flow: derivation and links with the Lighthill-Whitham model. Math Comput Model 35:581–590

    Article  MathSciNet  Google Scholar 

  11. Lebacque J-P, Mammar S, Haj-Salem H (2007) The Aw-Rascle and Zhang’s model: vacuum problems, existence and regularity of the solutions of the Riemann problem. Transp Res Part B 41:710–721

    Article  Google Scholar 

  12. Garavello M, Piccoli B (2006) Traffic flow on a road network using the Aw-Rascle model. Commun Partial Differ Equ 31:243–275

    Article  MathSciNet  Google Scholar 

  13. Herty M, Rascle M (2006) Coupling conditions for a class of second-order models for traffic flow. SIAM J Math Anal 38:595–616

    Article  MathSciNet  Google Scholar 

  14. Herty M, Moutari S, Rascle M (2006) Optimization criteria for modelling intersections of vehicular traffic flow. Netw Heterog Media 1:275–294

    Article  MathSciNet  Google Scholar 

  15. Kerner B (1998) Experimental features of self-organization in traffic flow. Phys Rev Lett 81:3797–3800

    Article  Google Scholar 

  16. Colombo R (2003) Hyperbolic phase transitions in traffic flow. SIAM J Appl Math 63:708–721

    Article  MathSciNet  Google Scholar 

  17. Blandin S, Work D, Goatin P, Piccoli B, Bayen A (2011) A general phase transition model for vehicular traffic. SIAM J Appl Math 71:107–127

    Article  MathSciNet  Google Scholar 

  18. Blandin S, Argote J, Bayen AM, Work DB (2013) Phase transition model of non-stationary traffic flow: definition. properties and solution method. Transp Res Part B 52:31–55

    Article  Google Scholar 

  19. Goatin P (2006) The Aw-Rascle vehicular traffic flow model with phase transitions. Math Comput Model 44:287–303

    Article  MathSciNet  Google Scholar 

  20. Colombo RM, Goatin P, Piccoli B (2010) Road networks with phase transitions. J Hyperbolic Differ Equ 7:85–106

    Article  MathSciNet  Google Scholar 

  21. Colombo RM, Garavello M (2014) Phase transition model for traffic at a junction. J Math Sci 196:30–36

    Article  MathSciNet  Google Scholar 

  22. Papageorgiou M, Blosseville J-M, Hadj-Salem H (1989) Macroscopic modelling of traffic flow on the Boulevard Périphérique in Paris. Transp Res Part B 23:29–47

    Article  Google Scholar 

  23. Papageorgiou M (1990) Modelling and real-time control of traffic flow on the Southern part of Boulevard Périphérique in Paris: part I: modelling. Transp Res Part A 24:345–359

    Article  Google Scholar 

  24. Messmer A, Papageorgiou M (1990) METANET: a macroscopic simulation program for motorway networks. Traffic Eng Control 31:466–470

    Google Scholar 

  25. Kotsialos A, Papageorgiou M, Diakaki C, Pavlis Y, Middelham F (2002) Traffic flow modeling of large-scale motorway networks using the macroscopic modeling tool METANET. IEEE Trans Intell Transp Syst 3:282–292

    Article  Google Scholar 

  26. Cremer M, May AD (1986) An extended traffic flow model for inner urban freeways. In: Preprints of 5th IFAC/IFIP/IFORS International conference on control in transportation systems, pp 383–388

    Google Scholar 

  27. Papageorgiou M, Kotsialos A (2002) Freeway ramp metering: an overview. IEEE Trans Intell Transp Syst 3:271–281

    Article  Google Scholar 

  28. Bellemans T, De Schutter B, De Moor B (2006) Model predictive control for ramp metering of motorway traffic: a case study. Control Eng Pract 14:757–767

    Article  Google Scholar 

  29. Hegyi A, De Schutter B, Hellendoorn H (2005) Model predictive control for optimal coordination of ramp metering and variable speed limits. Transp Res Part C 13:185–209

    Article  Google Scholar 

  30. Hegyi A, De Schutter B, Hellendoorn J (2005) Optimal coordination of variable speed limits to suppress shock waves. IEEE Trans Intell Transp Syst 6:102–112

    Article  Google Scholar 

  31. Cremer M (1979) Der Verkehrsfluss auf Schnellstrassen (Traffic flow on freeways), Fachberichte Messen 3, Steuern, Regeln. Springer, Berlin

    Book  Google Scholar 

  32. Carlson RC, Papamichail I, Papageorgiou M, Messmer A (2010) Optimal mainstream traffic flow control of large-scale motorway networks. Transp Res Part C 18:193–212

    Article  Google Scholar 

  33. Carlson RC, Papamichail I, Papageorgiou M (2011) Local feedback-based mainstream traffic flow control on motorways using variable speed limits. IEEE Trans Intell Transp Syst 12:1261–1276

    Article  Google Scholar 

  34. Tang TQ, Huang HJ, Zhao SG, Shang HY (2009) A new dynamic model for heterogeneous traffic flow. Phys Lett A 373:2461–2466

    Article  Google Scholar 

  35. Mohan R, Ramadurai G (2017) Heterogeneous traffic flow modelling using second-order macroscopic continuum model. Phys Lett A 381:115–123

    Article  Google Scholar 

  36. Deo P, De Schutter B, Hegyi A (2009) Model predictive control for multi-class traffic flows. In: Proceedings of the 12th IFAC symposium on transportation systems, pp 25–30

    Google Scholar 

  37. Liu S, De Schutter B, Hellendoorn H (2014) Model predictive traffic control based on a new multi-class METANET model. In: Proceedings of the 19th IFAC world congress, pp 8781–8785

    Article  Google Scholar 

  38. Logghe S, Immers LH (2008) Multi-class kinematic wave theory of traffic flow. Transp Res Part B 42:523–541

    Article  Google Scholar 

  39. Caligaris C, Sacone S, Siri S (2007) Optimal ramp metering and variable speed signs for multiclass freeway traffic. In: Proceedings of the European control conference, pp 1780–1785

    Google Scholar 

  40. Pasquale C, Sacone S, Siri S (2014) Two-class emission traffic control for freeway systems. In: Proceedings of the 19th IFAC world congress, pp 936–941

    Article  Google Scholar 

  41. Pasquale C, Papamichail I, Roncoli C, Sacone S, Siri S, Papageorgiou M (2015) Two-class freeway traffic regulation to reduce congestion and emissions via nonlinear optimal control. Transp Res Part C 55:85–99

    Article  Google Scholar 

  42. Pasquale C, Sacone S, Siri S, De Schutter B (2017) A multi-class model-based control scheme for reducing congestion and emissions in freeway networks by combining ramp metering and route guidance. Transp Res Part C 80:384–408

    Article  Google Scholar 

  43. Special report 209 (1994) Highway capacity manual, 3rd edn. Transportation Research Board, Washington DC

    Google Scholar 

  44. Al-Kaisy AF, Hall FL, Reisman ES (2002) Developing passenger car equivalents for heavy vehicles on freeways during queue discharge flow. Transp Res Part A 36:725–742

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antonella Ferrara .

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ferrara, A., Sacone, S., Siri, S. (2018). Second-Order Macroscopic Traffic Models. In: Freeway Traffic Modelling and Control. Advances in Industrial Control. Springer, Cham. https://doi.org/10.1007/978-3-319-75961-6_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-75961-6_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-75959-3

  • Online ISBN: 978-3-319-75961-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics