Advertisement

Introduction

  • Mattia Frasca
  • Lucia Valentina Gambuzza
  • Arturo Buscarino
  • Luigi Fortuna
Chapter
Part of the SpringerBriefs in Applied Sciences and Technology book series (BRIEFSAPPLSCIENCES)

Abstract

In this chapter, introductory concepts on synchronization and complex networks are given. We provide basic notions on synchronization of pairs of nonlinear systems and on complex networks, and define the differential equations representing the dynamics of a nonlinear system. These are the ingredients needed for the study of synchronization in complex networks that will be dealt with in the next chapters.

References

  1. 1.
    H.D. Abarbanel, N.F. Rulkov, M.M. Sushchik, Generalized synchronization of chaos: the auxiliary system approach. Phys. Rev. E 53(5), 4528 (1996)CrossRefGoogle Scholar
  2. 2.
    J.A. Acebrón, L.L. Bonilla, C.J.P. Vicente, F. Ritort, R. Spigler, The Kuramoto model: a simple paradigm for synchronization phenomena. Rev. Modern Phys. 77(1), 137 (2005)CrossRefGoogle Scholar
  3. 3.
    A. Arenas, A. Díaz-Guilera, J. Kurths, Y. Moreno, C. Zhou, Synchronization in complex networks. Phys. Rep. 469(3), 93–153 (2008)MathSciNetCrossRefGoogle Scholar
  4. 4.
    A.L. Barabási, R. Albert, Emergence of scaling in random networks. Science 286(5439), 509–512 (1999)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    M. Bastian, S. Heymann, M. Jacomy et al., Gephi: an open source software for exploring and manipulating networks. ICWSM 8, 361–362 (2009)Google Scholar
  6. 6.
    S. Boccaletti, J. Kurths, G. Osipov, D. Valladares, C. Zhou, The synchronization of chaotic systems. Phys. Rep. 366(1), 1–101 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    S. Boccaletti, V. Latora, Y. Moreno, M. Chavez, D.U. Hwang, Complex networks: structure and dynamics. Phys. Rep. 424(4), 175–308 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    A. Buscarino L. Fortuna, M. Frasca, Essentials of Nonlinear Circuit Dynamics with MATLAB® and Laboratory Experiments (CRC Press, Boca Raton, 2017)Google Scholar
  9. 9.
    G. Chen, X. Dong, From Chaos to Order: Methodologies, Perspectives and Applications (World Scientific, Singapore, 1998)Google Scholar
  10. 10.
    M. De Domenico, M.A. Porter, A. Arenas, Muxviz: a tool for multilayer analysis and visualization of networks. J. Complex Netw. 3(2), 159–176 (2015)CrossRefGoogle Scholar
  11. 11.
    M.D. De Domenico, The multilayer analysis and visualization platform (2014), http://muxviz.net/. Accessed 3 Jan 2018
  12. 12.
    O.L. de Weck, MIT Strategic Engineering Research Group, Matlab tools for network analysis (2014), http://strategic.mit.edu/downloads.php?page=matlab_networks. Accessed 3 Jan 2018
  13. 13.
    Networkx developers, Software for complex networks (2017), https://networkx.github.io/. Accessed 3 Jan 2018
  14. 14.
    F. Dorfler, F. Bullo, Synchronization and transient stability in power networks and nonuniform Kuramoto oscillators. SIAM J. Control Optim. 50(3), 1616–1642 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    E. Estrada, The Structure of Complex Networks: Theory and Applications (Oxford University Press, Oxford, 2012)Google Scholar
  16. 16.
    Gephiorg, Software for complex networks (2017), https://gephi.org/. Accessed 3 Jan 2018
  17. 17.
    M. Kivelä, A. Arenas, M. Barthelemy, J.P. Gleeson, Y. Moreno, M.A. Porter, Multilayer networks. J. Complex Netw. 2(3), 203–271 (2014)CrossRefGoogle Scholar
  18. 18.
    J. Krause, G.D. Ruxton, Living in Groups (Oxford University Press, Oxford, 2002)Google Scholar
  19. 19.
    V. Latora, V. Nicosia, G. Russo, Complex Networks: Principles, Methods and Applications (Cambridge University Press, Cambridge, 2017)CrossRefzbMATHGoogle Scholar
  20. 20.
    R.E. Mirollo, S.H. Strogatz, Synchronization of pulse-coupled biological oscillators. SIAM J. Appl. Math. 50(6), 1645–1662 (1990)MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    O.I. Moskalenko, A.A. Koronovskii, A.E. Hramov, S. Boccaletti, Generalized synchronization in mutually coupled oscillators and complex networks. Phys. Rev. E 86(3), 036,216 (2012)Google Scholar
  22. 22.
    A.E. Motter, S.A. Myers, M. Anghel, T. Nishikawa, Spontaneous synchrony in power-grid networks. Nat. Phys. 9(3), 191–197 (2013)CrossRefGoogle Scholar
  23. 23.
    A. Mrvar, V. Batagelj, Pajek: analysis and visualization of large networks (2017), http://mrvar.fdv.uni-lj.si/pajek/, Accessed 3 Jan 2018
  24. 24.
    J.D. Murray, Mathematical Biology. I. Interdisciplinary Applied Mathematics, vol. 17 (Springer, New York, 2002)Google Scholar
  25. 25.
    M. Newman, Networks: An Introduction (Oxford University Press, Oxford, 2010)Google Scholar
  26. 26.
    M.E. Newman, The structure and function of complex networks. SIAM Rev. 45(2), 167–256 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  27. 27.
    J. Pantaleone, Synchronization of metronomes. Am. J. Phys. 70(10), 992–1000 (2002)CrossRefGoogle Scholar
  28. 28.
    L. Pastur, S. Boccaletti, P. Ramazza, Detecting local synchronization in coupled chaotic systems. Phys. Rev. E 69(3):036,201 (2004)Google Scholar
  29. 29.
    L.M. Pecora, T.L. Carroll, Synchronization in chaotic systems. Phys. Rev. Lett. 64(8), 821 (1990)MathSciNetCrossRefzbMATHGoogle Scholar
  30. 30.
    A. Pikovsky, M. Rosenblum, J. Kurths, Synchronization: A Universal Concept in Nonlinear Sciences, vol 12 (Cambridge University Press, Cambridge, 2003)Google Scholar
  31. 31.
    J.P. Ramirez, L.A. Olvera, H. Nijmeijer, J. Alvarez, The sympathy of two pendulum clocks: beyond Huygens observations. Sci. Rep. 6 (2016)Google Scholar
  32. 32.
    M.G. Rosenblum, A.S. Pikovsky, J. Kurths, Phase synchronization of chaotic oscillators. Phys. Rev. Lett. 76(11), 1804 (1996)Google Scholar
  33. 33.
    M.G. Rosenblum, A.S. Pikovsky, J. Kurths, From phase to lag synchronization in coupled chaotic oscillators. Phys. Rev. Lett. 78(22), 4193 (1997)CrossRefzbMATHGoogle Scholar
  34. 34.
    J.C. Sprott, Elegant Chaos: Algebraically Simple Chaotic Flows (World Scientific, Singapore, 2010)Google Scholar
  35. 35.
    S. Strogatz, Sync: The Emerging Science of Spontaneous Order (Penguin UK, 2004)Google Scholar
  36. 36.
    S.H. Strogatz, From Kuramoto to Crawford: exploring the onset of synchronization in populations of coupled oscillators. Physica D: Nonlinear Phenomena 143(1), 1–20 (2000)MathSciNetCrossRefzbMATHGoogle Scholar
  37. 37.
    S.H. Strogatz, Nonlinear Dynamics and Chaos: With Applications to Physics, Biology, Chemistry, and Engineering (Hachette, UK, 2014)Google Scholar
  38. 38.
    D.J. Watts, S.H. Strogatz, Collective dynamics of small-world networks. Nature 393(6684), 440–442 (1998)CrossRefzbMATHGoogle Scholar

Copyright information

© The Author(s) 2018

Authors and Affiliations

  • Mattia Frasca
    • 1
  • Lucia Valentina Gambuzza
    • 1
  • Arturo Buscarino
    • 1
  • Luigi Fortuna
    • 1
  1. 1.Department of Electrical, Electronic and Computer EngineeringUniversity of CataniaCataniaItaly

Personalised recommendations