Skip to main content

Modeling of Microstructures in a Cosserat Continuum Using Relaxed Energies

  • Chapter
  • First Online:
Trends in Applications of Mathematics to Mechanics

Part of the book series: Springer INdAM Series ((SINDAMS,volume 27))

Abstract

Granular materials tend to exhibit distinct patterns under deformation consisting of layers of counter-rotating particles. In this article, we are going to model this phenomenon on a continuum level by employing the calculus of variations, specifically the concept of energy relaxation. In the framework of Cosserat continuum theory the free energy of the material is enriched with an interaction energy potential taking into account the counter rotations of the particles. The total energy thus becomes non-quasiconvex, giving rise to the development of microstructures. Relaxation theory is then applied to compute its exact quasiconvex envelope. It is worth mentioning that there are no further assumptions necessary here. The computed relaxed energy yields all possible displacement and micro-rotation field fluctuations as minimizers. Based on a two-field variational principle the constitutive response of the material is derived. Results from numerical computations demonstrating the properties of relaxed potential are shown.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Alonso-Marroqu\(\acute {i}\)n, F., Vardoulakis, I., Herrmann, H.J., Weatherley, D., Mora, P.: Effect of rolling on dissipation in fault gouges. Phys. Rev. E 74, 301–306 (2006). http://dx.doi.org/doi:10.1103/PhysRevE.74.031306

  2. Alsaleh, M.I., Voyiadjis, G.Z., Alshibli, K.A.: Modeling strain localization in granular materials using micropolar theory: Mathematical formulations. Int. J. Numer. Anal. Meth. Goemech. 30, 1501–1524 (2006). http://dx.doi.org/doi:10.1002/nag.533

    Article  MATH  Google Scholar 

  3. Alshibli, K.A., Alsaleh, M.I., Voyiadjis, G.Z.: Modelling strain localization in granular materials using micropolar theory: Numerical implementation and verification. Int. J. Numer. Anal. Meth. Goemech. 30, 1525–1544 (2006). http://dx.doi.org/doi:10.1002/nag.534

    Article  MATH  Google Scholar 

  4. Aranda, E., Pedregal, P.: Numerical approximation of non-homogeneous, non-convex vector variational problems. Numer. Math. 89, 425–444 (2001). http://dx.doi.org/doi:10.1007/s002110100294

  5. Aranson, I., Tsimring, L.: Granular Patterns. Oxford University Press, Oxford (2009)

    Google Scholar 

  6. Bagnold, R.A.: The Physics of Blown Sand and Desert Dunes. Methuen and Co. Ltd., London (1941)

    Google Scholar 

  7. Ball, J.M.: Convexity conditions and existence theorems in nonlinear elasticity. Arch. Ration. Mech. Anal. 63, 337–403 (1976). http://dx.doi.org/doi:10.1007/BF00279992

    Article  MathSciNet  MATH  Google Scholar 

  8. Ball, J.M., James, R.D.: Fine phase mixtures as minimizers of energy. Arch. Ration. Mech. Anal. 100, 13–52 (1987). http://dx.doi.org/doi:10.1007/bf00281246

    Article  MathSciNet  MATH  Google Scholar 

  9. Bardet, J.P.: Observation on the effects of particle rotations on the failure of idealized granular materials. Mech. Mater. 8, 159–182 (1994). http://dx.doi.org/doi:10.1016/0167-6636(94)00006-9

    Article  Google Scholar 

  10. Bartels, S.: Numerical Analysis of Some Non-Convex Variational Problems. PhD thesis. Christian-Alberechts-Universität, Kiel (2001)

    Google Scholar 

  11. Bauer, E., Huang, W.: Numerical investigation of strain localization in a hypoplastic cosserat material under shearing. In: Desai (ed.) Proceedings of the 10th International Conference on Computer Methods and Advances in Geomechanics, pp. 525–528. Taylor & Francis (2001)

    Google Scholar 

  12. Carstensen, C., Conti, S., Orlando, A.: Mixed analytical-numerical relaxation in finite single-slip crystal plastictiy. Continuum Mech. Thermodyn. 20, 275–301 (2008). http://dx.doi.org/doi:10.1007/s00161-008-0082-0

    Article  MathSciNet  MATH  Google Scholar 

  13. Carstensen, C., Hackl, K., Mielke, A.: Nonconvex potentials and microstructures in finite-strain plasticity. Proc. R. Soc. Lond. A 458, 299–317 (2002). http://dx.doi.org/doi:10.1098/rspa.2001.0864

    Article  MathSciNet  MATH  Google Scholar 

  14. Carstensen, C., Plech\(\acute {a}\check {c}\), P.: Numerical solution of the scalar double-well problem allowing microstructure. Math. Comp. 66, 997–1026 (1997). http://dx.doi.org/doi:10.1090/S0025-5718-97-00849-1

    Article  MathSciNet  MATH  Google Scholar 

  15. Carstensen, C., Roub\(\acute {i}\check {c}\)ek, T.: Numerical approximation of young measures in non-convex variational problems. Numer. Math. 84, 395–415 (2000). http://dx.doi.org/doi:10.1007/s002119900122

  16. Carstensen, C., Roub\(\acute {i}\check {c}\)ek, T.: Numerical approximation of young measures in non-convex variational problems. Tech. Rep., 97–18 (1997). Universität Kiel

    Google Scholar 

  17. Chang, C.S., Hicher, P.Y.: An elasto-plastic model for grnaular materials with microstructural consideration. Int. J. Solids Struct. 42, 4258–4277 (2005). http://dx.doi.org/doi:10.1016/j.ijsolstr.2004.09.021

    Article  MATH  Google Scholar 

  18. Chang, C.S., Ma, L.: Elastic material constants for isotropic granular solids with particle rotation. Int. J. Solids Struct. 29, 1001–1018 (1992). http://dx.doi.org/doi:10.1016/0020-7683(92)90071-Z

    Article  MATH  Google Scholar 

  19. Chipot, M.: The appearance of microstructures in problems with incompatible wells and their numerical approach. Numer. Math. 83, 325–352 (1999). http://dx.doi.org/doi:10.1007/s002110050452

    Article  MathSciNet  MATH  Google Scholar 

  20. Chipot, M., Collins, C.: Numerical approximation in variational problems with potential wells. SIAM J. Numer. Anal. 29, 1002–1019 (1992). http://dx.doi.org/doi:10.1137/0729061

    Article  MathSciNet  MATH  Google Scholar 

  21. Collins, C., Kinderlehrer, D., Luskin, M.: Numerical approximation of the solution of a variational problem with a double well potential. SIAM J. Numer. Anal. 28, 321–332 (1991). http://dx.doi.org/doi:10.1137/0728018

    Article  MathSciNet  MATH  Google Scholar 

  22. Conti, S., Hauret, P., Ortiz, M.: Conurrent multiscale computing of deformation microstructure by relaxation and local enrichment with application to single-crystal plasticity. Multiscale Model. Simul. 6, 135–157 (2007). http://dx.doi.org/doi:10.1137/060662332

    Article  MathSciNet  MATH  Google Scholar 

  23. Conti, S., Ortiz, M.: Dislocation microstructures and the effective behavior of single crystals. Arch. Rational Mech. Anal. 176, 103–147 (2005). http://dx.doi.org/doi:10.1007/s00205-004-0353-2

    Article  MathSciNet  MATH  Google Scholar 

  24. Conti, S., Theil, F.: Single-slip elastoplastic microstructures. Arch. Ration. Mech. Anal. 178, 125–148 (2005). http://dx.doi.org/doi:10.1007/s00205-005-0371-8

    Article  MathSciNet  MATH  Google Scholar 

  25. Dacorogna, B.: Direct Methods in the Calculus of Variations. Springer, Berlin-Heidelberg-New York (1989)

    Book  Google Scholar 

  26. Dacorogna, B.: Necessary and sufficient conditions for strong ellipticity of isotropic functions in any dimension. Discrete Contin. Dyn. Syst. B. 1, 257–263 (2001). http://dx.doi.org/doi:10.3934/dcdsb.2001.1.257

    Article  MathSciNet  MATH  Google Scholar 

  27. de Borst, R.: Simulation of strain localization: a reappraisal of the Cosserat-continuum. Eng. Comp. 8, 317–332 (1991). http://dx.doi.org/doi:10.1108/eb023842

    Article  Google Scholar 

  28. DeSimone, A., Dolzmann, G.: Macroscopic response of nematic elastomers via relaxation of a class of SO(3)-invariant energies. Arch. Ration. Mech. Anal. 161, 181–204 (2002). http://dx.doi.org/doi:10.107/s002050100174

  29. Dolzmann, G., Walkington, N.J.: Estimates for numerical approximations of rank one convex envelopes. Numer. Math. 85, 647–663 (2000). http://dx.doi.org/doi:10.1007/PL00005395

    Article  MathSciNet  MATH  Google Scholar 

  30. Le Dret, H., Raoult, A.: The quasiconvex envelope of the Saint Venant-Kirchhoff stored energy function. Proc. Roy. Soc. Edinburgh 125A, 1179–1192 (1995). http://dx.doi.org/doi:10.1017/S0308210500030456

    Article  MathSciNet  MATH  Google Scholar 

  31. Ehlers, W., Volk, W.: On shear band localization phenomena of liquid-saturated granular elastoplastic porous solid materials accounting for fluid viscosity and micropolar solid rotations. Mech. Cohes.-Frict. Mat. 2, 301–320 (1997). http://dx.doi.org/doi:10.1002/(SICI)1099-1484(199710)2:4<301::AID-CFM34>3.0.CO;2-D(10.1002/(SICI)1099-1484(199710)2:4<301::AID-CFM34>3.0.CO;2-D)

  32. Govindjee, S., Hackl, K., Heinen, R.: An upper bound to the free energy of mixing by twin-compatible lamination for n-variant martensitic phase transformations. Continuum Mech. Thermodynam. 18, 443–453 (2007). http://dx.doi.org/doi:10.1007/s00161-006-0038-1(10.1007/s00161-006-0038-1)

  33. Gudehus, G., Nübel, K.: Evolution of shear bands in sand. Géotechnique 54, 187–201 (2004). http://dx.doi.org/doi:10.1680/geot.2004.54.3.187(10.1680/geot.2004.54.3.187)

  34. Gürses, E., Miehe, C.: On evolving deformation microstructures in non-convex partially damaged solids. J. Mech. Phys. Solids 59, 1268–1290 (2011). http://dx.doi.org/doi:10.1016/j.jmps.2011.01.002(10.1016/j.jmps.2011.01.002)

  35. Hackl, K., Heinen, R.: An upper bound to the free energy of n-variant polycrystalline shape memory alloys. J. Mech. Phys. Solids. 56, 2832–2843 (2008). http://dx.doi.org/doi:10.1016/j.jmps.2008.04.005(10.1016/j.jmps.2008.04.005)

  36. Kohn, R.V.: The relaxation of a double-well energy. Continum Mech. Thermodynam. 3, 193–236 (1991). http://dx.doi.org/doi:10.1007/BF01135336

    Article  MathSciNet  MATH  Google Scholar 

  37. Kohn, R.V., Strang, G.: Optimal design and relaxation of variational problems I. Comm. Pure Appl. Math. 39, 113–137 (1986). http://dx.doi.org/doi:10.1002/cpa.3160390107

    Article  MathSciNet  MATH  Google Scholar 

  38. Kohn, R.V., Strang, G.: Optimal design and relaxation of variational problems II. Comm. Pure Appl. Math. 39, 139–182 (1986). http://dx.doi.org/doi:10.1002/cpa.3160390202

    Article  MathSciNet  MATH  Google Scholar 

  39. Kohn, R.V., Vogelius, M.: Relaxation of a variational method for impedance computed tomography. Comm. Pure Appl. Math. 40, 745–777 (1987). http://dx.doi.org/doi:10.1002/cpa.3160400605

    Article  MathSciNet  MATH  Google Scholar 

  40. Lambrecht, M., Miehe, C., Dettmar, J.: Energy relaxation of non-convex incremental stress potentials in a strain-softening elastic-plastic bar. Int. J. Soids Struct. 40, 1369–1391 (2003). http://dx.doi.org/doi:10.1016/S0020-7683(02)00658-3

    Article  MATH  Google Scholar 

  41. Morrey, C.B.: Quasi-convextiy and the lower seimicontinuity of multiple integrals. Pac. J. Math. 2, 25–53 (1952). See http://projecteuclid.org/euclid.pjm/1103051941http://projecteuclid.org/euclid.pjm/1103051941

  42. Nicolaides, R.A., Walkington, N.J.: Computation of microsturcture utilizing Young measures representations. In: Rogers, C.A., Rogers, R.A. (eds.) Recent Advances in Adaptive and Sensory Materials and their Applications, pp. 131–141.Technomic Publ., Lancaster (1992)

    Google Scholar 

  43. Nicolaides, R.A., Walkington, N.J.: Strong convergence of numerical solutions to degenrate variational problems. Math. Comp. 64, 117–127 (1992). See http://www.jstor.org/stable/2153325http://www.jstor.org/stable/2153325

  44. Oda, M., Kazama, H.: Microstructure of shear bands and its relation to the mechanisms of dilatancy and failure of dense granular soils. Géotechnique 48, 465–481 (1998). http://dx.doi.org/doi:10.1680/geot.1998.48.4.465

    Article  Google Scholar 

  45. Papanicolopulos, S.A., Veveakis, E.: Sliding and rolling dissipation in Cosserat plasticity. Granular Matter 13, 197–204 (2011). http://dx.doi.org/doi:10.1007/s10035-011-0253-8

    Article  Google Scholar 

  46. Pasternak, E., Mühlhaus, H.B.: Cosserat continuum modelling of granulate materials. In: Valliappan, S., Khalili, N. (eds.) Computational Mechanics - New Frontiers for New Millennium, pp. 1189–1194. Elsevier Science (2001)

    Google Scholar 

  47. Pedregal, P.: Parametrized Measures and Variational Principles. Birkhäuser (1997)

    Chapter  Google Scholar 

  48. Pedregal, P.: Numerical approximation of parametrized measures. Numer. Funct. Anal. Optim. 16, 1049–1066 (1995). http://dx.doi.org/doi:10.1080/01630569508816659

    Article  MathSciNet  MATH  Google Scholar 

  49. Pedregal, P.: On numerical analysis of non-convex variational problems. Numer. Math. 74, 325–336 (1996). http://dx.doi.org/doi:10.1007/s002110050219

    Article  MathSciNet  MATH  Google Scholar 

  50. Raoult, A.: Quasiconvex envelopes in nonlinear elasticity. In: Schröder, J., Neff, P. (ed.) Poly-, Quasi- and Rank-One Convexity in Applied Mechanics, pp. 17–51. Springer, Vienna (2010). http://dx.doi.org/doi:10.1007/978-3-7091-0174-2

    Book  Google Scholar 

  51. Roub\(\acute {i}\check {c}\)ek, T.: Relaxation in Optimization Theory and Variational Calculus. Valter de Gruyter, Berlin, New York (1997)

    Google Scholar 

  52. Roub\(\acute {i}\check {c}\)ek, T.: Finite element approximation of a microstructure evolution. Math. Methods Appl. Sci. 17, 377–393 (1994). http://dx.doi.org/doi:10.1002/mma.1670170505

    Article  MathSciNet  MATH  Google Scholar 

  53. Roub\(\acute {i}\check {c}\)ek, T.: Numerical approximation of relaxed variational problems. J. Convex Anal. 3, 329–347 (1996). See http://eudml.org/doc/i33027http://eudml.org/doc/233027

  54. Sawada, K., Zhang, F., Yashima, A.: Rotation of granular material in laboratory tests and its numerical simulation using TIJ-Cosserat continuum theory. Comput. Methods, 1701–1706 (2006). http://dx.doi.org/doi:10.1007/978-1-4020-3953-9_104

  55. Suiker, A.S.J., de Borst, R., Chang, C.S.: Micro-mechanical modelling of granular material. Part 1: Derivation of a second-gradient micro-polar constitutive theory. Acta Mechanica 149, 161–180 (2001). http://dx.doi.org/doi:10.1007/BF01261670

    Article  Google Scholar 

  56. Suiker, A.S.J., de Borst, R., Chang, C.S.: Micro-mechanical modelling of granular material. Part 2: Plane wave propagation in infinite media. Acta Mechanica 149, 181–200 (2001). http://dx.doi.org/doi:10.1007/BF01261671

    Article  Google Scholar 

  57. Tejchman, J., Niemunis, A.: FE-studies on shear localization in an anisotropic micro-polar hypoplastic granular material. Granular Matter. 8, 205–220 (2006). http://dx.doi.org/doi:10.1007/s10035-006-0009-z

    Article  Google Scholar 

  58. Tordesillas, A., Peters, J.F., Muthuswamy, M.: Role of particle rotations and rolling resistance in a semi-infinite particulate solid indented by a rigid flat punch. ANZIAM J. 46, C260–C275 (2005)

    Article  Google Scholar 

  59. Tordesillas, A., Walsh, S.D.C.: Incorporating rolling resistance and contact anisotropy in micromechanical models of granular media. Powder Technol. 124, 106–111 (2002). http://dx.doi.org/doi:10.1016/S0032-5910(01)00490-9

    Article  Google Scholar 

  60. Tordesillas, A., Walsh, S.D.C., Gardiner, B.: Bridging the length scales: Micromechanics of granular media. BIT Numer. Maths. 44, 539–556 (2004). http://dx.doi.org/doi:10.1023/B:BITN.0000046817.60322.ed

    Article  MathSciNet  Google Scholar 

  61. Trinh, B.T., Hackl, K.: Performance of mixed and enhanced finite elements for strain localization in hypoplasticity. Int. J. Numer. Anal. Methods Geomech. 35, 1125–1150 (2012). https://doi.org/10.1002/nag.1042

    Article  Google Scholar 

  62. Trinh, B.T., Hackl, K.: Modelling of shear localization in solids by means of energy relaxation. Asia Pac. J. Comput. Eng. 1, 1–21 (2014)

    Article  Google Scholar 

  63. Trinh, B.T., Hackl, K.: A model for high temperature creep of single crystal superalloys based on nonlocal damage and viscoplastic material behavior. Contin. Mech. Thermodyn. 26, 551–562 (2014)

    Article  MathSciNet  Google Scholar 

  64. Young, L.C.: Generalized Curves and the Existence of an Attained Absolute Minimum in the Calculus of Variations, pp. 212–234 ( 1937)

    Google Scholar 

Download references

Acknowledgements

The first author gratefully acknowledge the funding by Higher Education Commission (HEC) of Pakistan and highly appreciate the support by Deutscher Akademischer Austausch Dienst (DAAD) for this research work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Klaus Hackl .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Khan, M.S., Hackl, K. (2018). Modeling of Microstructures in a Cosserat Continuum Using Relaxed Energies. In: Rocca, E., Stefanelli, U., Truskinovsky, L., Visintin, A. (eds) Trends in Applications of Mathematics to Mechanics. Springer INdAM Series, vol 27. Springer, Cham. https://doi.org/10.1007/978-3-319-75940-1_6

Download citation

Publish with us

Policies and ethics