Ecology and Conservation of Passalidae

  • Michael D. UlyshenEmail author
Part of the Zoological Monographs book series (ZM, volume 1)


Consisting of about 1000 species globally, beetles of the family Passalidae feed on decomposing wood in tropical and subtropical forests throughout the world. Passalids live in subsocial family groups within their galleries, characterized by overlapping generations, cooperative brood care, and a complex communication system involving stridulations. In what has been referred to as an “external rumen,” larval passalids feed on the microbe-rich frass and finely chewed wood paste produced by the wood-feeding adults. Endosymbionts found within the guts of passalids include a variety of microbes, including nitrogen-fixing prokaryotes and yeasts that aid in the digestion of wood. In addition to wood consumption, passalids fragment large amounts of wood in the process of creating extensive tunnel systems and are, among saproxylic insects, perhaps rivaled only by termites in their importance to wood decomposition. Although a number of laboratory studies have measured the amount of wood processed by various passalid species, no attempt has been made to quantify their contributions to wood decomposition under natural conditions. Passalids , along with their many microbial and invertebrate associates, are of considerable conservation concern given high levels of endemism and flightlessness. Many species appear sensitive to forest loss and disturbance and they have been used as indicator taxa in the creation of protected natural areas.



I thank Meredith Blackwell for commenting on the manuscript and Jessica Mou for providing edits.


  1. Arrow GJ (1950) The fauna of India, including Pakistan, Ceylan, Burma and Malaya. Volume IV. Coleoptera Lamellicornia. Lucanidae and Passalidae. Taylor and Francis, LondonGoogle Scholar
  2. Ballerio A, Maruyama M (2010) The Ceratocanthinae of Ulu Gombak: high species richness at a single site, with descriptions of three new species and an annotated checklist of the Ceratocanthinae of Western Malaysia and Singapore (Coleoptera, Scarabaeoidea, Hybosoridae). ZooKeys 34(Spec iss 2):77–104Google Scholar
  3. Boucher S (2005) Évolution et phylogénie des Coléoptères Passalidae (Scarabaeoidea). Ann Soc Entomol Fr 41:239–604CrossRefGoogle Scholar
  4. Boucher S, Dutrillaux A-M, Dutrillaux B (2015) Parthenogenetic reproduction demonstrated in the diploid Spasalus puncticollis (Le Peletier & Serville 1825), n. stat., from the Antilles (Coleoptera, Scarabaeoidea, Passalidae). C R Biol 338:738–744CrossRefPubMedGoogle Scholar
  5. Brown JH (2004) Challenges in estimating size and conservation of black bear in west-central Florida. MS Thesis, University of Kentucky, p 58Google Scholar
  6. Butler L, Hunter PE (1968) Redescription of Megisthanus floridanus with observations on its biology (Acarina: Megisthanidae). Fla Entomol 51:187–197CrossRefGoogle Scholar
  7. Cambefort Y, Walter P (1985) Description du nid et de la larve de Paraphytus aphodiodes Boucomont et notes sur l’origine de la coprophagie et l’evolution des colepteres Scarabaeiae S. Str. Ann Soc Entomol Fr 21:351–356Google Scholar
  8. Cano EB, Schuster JC (2009) Beetles as indicators for forest conservation in central America. In: Del Claro K, Oliveira PS, Rico-Gray V (eds) Tropical biology and conservation management – VI: phytopathology and entomology, pp 99–124Google Scholar
  9. Cano EB, Schuster JC (2012) La ecología de la degradación de la madera por escarabajos Passalidae (Coleoptera): simbiosis y efectos sobre el comportamiento. Revista 24 de la Universidad del Valled de Guatemala, pp 72–81Google Scholar
  10. Castillo ML, Lobo JM (2004) A comparison of Passalidae (Coleoptera, Lamellicornia) diversity and community structure between primary and secondary tropical forest in Los Tuxtlas, Veracruz, Mexico. Biodivers Conserv 13:1257–1269CrossRefGoogle Scholar
  11. Castillo ML, Morón MA (1992) Observaciones sobre la degradacion de madera por algunas especies de pasalidos (Coleoptera, Lamellicornia). Folia Entomol Mex 84:35–44Google Scholar
  12. Castillo ML, Reyes-Castillo P (2003) Los Passalidae: coleópteros tropicales degradadores de troncos de árboles muertos. In: Alvarez-Sanchez J, Naranjo-Garcia E (eds) Ecología del suelo en la selva tropical húmeda de México. Universidad Nacional Autonoma de Mexico, XalapaGoogle Scholar
  13. Castillo ML, Reyes-Castillo P (2009) Passalidae, insects which live in decaying logs. In: Del Claro K, Oliveira PS, Rico-Gray V (eds) Tropical biology and conservation management. Volume VII. Encyclopedia of life support systems, pp 112–133Google Scholar
  14. Ceja-Navarro JA, Nguyen NH, Karaoz U, Gross SR, Herman DJ, Andersen GL, Bruns TD, Pett-Ridge J, Blackwell M, Brodie EL (2014) Compartmentalized microbial composition, oxygen gradients and nitrogen fixation in the gut of Odontotaenius disjunctus. ISME J 8:6–18CrossRefPubMedGoogle Scholar
  15. Dibb JR (1938) Synopsis of Australian Passalidae (Coleoptera). T Roy Ent Soc London 87:103–124CrossRefGoogle Scholar
  16. Ento K, Araya K, Kudo S-I (2008) Trophic egg provisioning in a passalid beetle (Coleoptera). Eur J Entomol 105(1):99–104CrossRefGoogle Scholar
  17. Fonseca CRV (1988) Contribuição ao conhecimento da bionomia de Passalus convexus Dalman, 1817 e Passalus latifrons Percheron, 1841 (Coleoptera: Passalidae). Acta Amazon 18:197–222CrossRefGoogle Scholar
  18. Fonseca CJM (2014) Caracterización y aporte funcional de gremios de escarabajos saproxilófagos (Coleoptera: Passalidae) en robledales del parquet regional municipal robledales de tipacoque (PRMT)- boracá, Colombia. MS Thesis, Universidad Nacional de ColombiaGoogle Scholar
  19. Fonseca CRVD, Reyes-Castillo P (2004) Synopsis on Passalidae family (Coleoptera: Scarabaeoidea) of Brazil with description of a new species of Veturius Kaup, 1871. Zootaxa 789:1–26Google Scholar
  20. Galindo-Cardona A, Giray T, Sabat AM, Reyes-Castillo P (2007) Bess beetle (Coleoptera: Passalidae): substrate availability, dispersal, and distribution in a subtropical wet forest. Ann Entomol Soc Am 100:711–720CrossRefGoogle Scholar
  21. Gray IE (1946) Observations on the life history of the horned passalus. Am Midl Nat 35(3):728–746CrossRefGoogle Scholar
  22. Heymons R (1929) Über die biologie der passaluskäfer. Z Morphol Okol Tiere 16:74–100CrossRefGoogle Scholar
  23. Hinks WD (1933) Notes on the Passalidae: no. 2. Flightless species. Entomol Mon Mag 69:10–13Google Scholar
  24. Howden HF (1977) Beetles, beach drift, and island biogeography. Biotropica 9CrossRefGoogle Scholar
  25. Hunter PE (1993) Mites associated with new world passalid beetles (Coleoptera: Passalidae). Acta Zool Mex 58:1–37Google Scholar
  26. Jackson HB, Baum KA, Robert T, Cronin JT (2009) Habitat-specific movement and edge-mediated behavior of the saproxylic insect Odontotaenius disjunctus (Coleoptera: Passalidae). Environ Entomol 38:1411–1422CrossRefPubMedGoogle Scholar
  27. Jackson HB, Baum KA, Cronin JT (2012) From logs to landscapes: determining the scale of ecological processes affecting the incidence of a saproxylic beetle. Ecol Entomol 37:233–243CrossRefGoogle Scholar
  28. Jackson HB, Zeccarias A, Cronin JT (2013) Mechanisms driving the density–area relationship in a saproxylic beetle. Oecologia 173(4):1237–1247CrossRefPubMedGoogle Scholar
  29. Jimenez-Ferbans L, Reyes-Castillo P, Schuster JC (2015) Passalidae (Coleoptera: Scarabaeoidea) of the greater and lesser Antilles. Zootaxa 4:491–512CrossRefGoogle Scholar
  30. Johki Y (1987) Morpho-ecological analysis on the relationship between habitat and body shape in adult passalid beetles (Coleoptera: Passalidae). Mem Fac Sci Kyoto Univ (Biol) 12:119–128Google Scholar
  31. Kampichler C, Bruckner A (2009) The role of microarthropods in terrestrial decomposition: a meta-analysis of 40 years of litterbag studies. Biol Rev 84:375–389CrossRefPubMedGoogle Scholar
  32. Kattan GH, Murcia C, Galindo-Cardona A (2010) An evaluation of bess beetles (Passalidae) and their resource base in a restored Andean Forest. Trop Conserv Sci 3:334–343CrossRefGoogle Scholar
  33. Kent DS, Simpson JA (1992) Eusociality in the beetle Austroplatypus incompertus (Coleoptera: Curculionidae). Naturwissenschaften 79(2):86–87CrossRefGoogle Scholar
  34. Kim J-I, Kim SI (2014) Insect Fauna of Korea, volume 12: Lucanidae and Passalidae. National Institute of Biological Resources, IncheonGoogle Scholar
  35. Kon M, Johki Y (1987) A new type of microhabitat, the interface between the log and the ground, observed in the passalid beetle of Borneo, Taeniocerus bicanthatus (Coleoptera: Passalidae). J Ethol 5:197–198CrossRefGoogle Scholar
  36. Kon M, Ueno T, Araya K (1999) A new record of Cylindrocaulus davidi Boucher et Reyes-Castillo (Coleoptera, Passalidae) from Gansu, China. Elytra 27(2):475–476Google Scholar
  37. Larroche D, Grimaud M (1988) Recherches sur les passalides Africains. III. Evolution de la teneur en phosphore du bois en decomposition suite a son utilisation comme substrat alimentaire par des passalides. Actes Collogue Insectes Soc 4:103–110Google Scholar
  38. Leidy J (1852) Description of some nematoid entozoa infesting insects. Proc Acad Nat Sci Phila 5:100–103Google Scholar
  39. Lichtwardt RW, White MM, Cafaro MJ, Misra JK (1999) Fungi associated with passalid beetles and their mites. Mycologia 91:694–702CrossRefGoogle Scholar
  40. Lobo J, Castillo ML (1997) The relationship between ecological capacity and morphometry in a neotropical community of Passalidae (Coleoptera). Coleopts Bull 51:147–153Google Scholar
  41. Luederwaldt H (1931) Monographia dos passalideos do Brasil (Col.) Revista do Museu Paulista 17:1–262Google Scholar
  42. MacGown J, MacGown M (1996) Observation of a nuptial flight of the horned passalus beetle, Odontotaenius disjunctus (Illiger) (Coleoptera: Passalidae). Coleopts Bull 50:201–203Google Scholar
  43. Mason WH, Odum EP (1969) The effect of coprophagy on retention and bioelimination of radionuclides by detritus-feeding animals. In: Proceedings of the second national symposium on radioecology, pp 721–724Google Scholar
  44. Mishima T, Wada N, Iwata R, Anzai H, Hosoya T, Araya K (2016) Super-protective child-rearing by Japanese bess beetles, Cylindrocaulus patalis: adults provide their larvae with chewed and predigested wood. Insects 7(2):18CrossRefPubMedCentralGoogle Scholar
  45. Moreno-Fonseca CJ, Amat-García GD (2016) Morfoecología de gremios en escarabajos (Coleoptera: Passalidae) en un gradiente altitudinal en robledales de la Cordillera Oriental, Colombia. Rev Biol Trop 64:305–319CrossRefGoogle Scholar
  46. Mori H, Chiba S (2009) Sociality improves larval growth in the stag beetle Figulus binodulus (Coleoptera: Lucanidae). Eur J Entomol 106:379–383CrossRefGoogle Scholar
  47. Morón MA (1985) Los insectos degradadores, un factor poco estudiado en los bosques de Mexico. Folia Entomol Mex 65:131–137Google Scholar
  48. Morón MA, Valenzuela J, Terron RA (1988) La macro-coleopterofauna saproxilofila del soconusco, Chiapas, Mexico. Folia Entomol Mex 74:145–158Google Scholar
  49. Nardi JB, Bee CM, Miller LA, Nguyen NH, Suh SO, Blackwell M (2006) Communities of microbes that inhabit the changing hindgut landscape of a subsocial beetle. Arthropod Struct Dev 35:57–68CrossRefPubMedGoogle Scholar
  50. Nguyen NH, Suh S-O, Marshall CJ, Blackwell M (2006) Morphological and ecological similarities: wood-boring beetles associated with novel xylose-fermenting yeasts, Spathaspora passalidarum gen. sp. nov. and Candida jeffriesii sp. nov. Mycol Res 110(10):1232–1241CrossRefPubMedGoogle Scholar
  51. Ohaus F (1909) Bericht über eine entomologische Studienreise in Südamerika. Stettin Ent Zeitung 70:1–139Google Scholar
  52. Pearse AS, Patterson MT, Rankin JS, Wharton GW (1936) The ecology of Passalus cornutus Fabricius, a beetle which lives in rotting logs. Ecol Monogr 6(4):455–490CrossRefGoogle Scholar
  53. Preiss FJ, Catts EP (1968) The mechanical breakdown of hardwood in the laboratory by Popilius disjunctus. J Kansas Entomol Soc 41:240–242Google Scholar
  54. Reynolds HC (1945) Aspects of the life history and ecology of the opossum in central Missouri. J Mammal 26:361–379CrossRefGoogle Scholar
  55. Rodriguez ME, Zorrilla MA (1986) Passalus interstitialis Pascoe (Coleoptera: Passalidae) y su papel en el inicio de la descomposicion de la madera en el bosque de la Estacion Ecologica Sierra del Rosario, Cuba. II. Actividad en condiciones de laboratorio. Cienc Biol 16:69–75Google Scholar
  56. Sarasija P, Remadevi OK, Srinivasa YB (2012) Comparison of saproxylic insect diversity in three forest types of Rajiv Gandhi National Park, Nagarahole (Nilgiri Biosphere Reserve, India). Curr Biotica 5:413–420Google Scholar
  57. Schuster JC (1978) Biogeographical and ecological limits of new world Passalidae. Coleopts Bull 32:21–28Google Scholar
  58. Schuster JC (1983) Acoustical signals of Passalid beetles: complex repertoires. Fla Entomol 66(4):486–496CrossRefGoogle Scholar
  59. Schuster JC (1994) Odontotaenius floridanus new species (Coleoptera: Passalidae): a second U.S. Passalid beetle. Fla Entomol 77:474–479CrossRefGoogle Scholar
  60. Schuster JC (2008) Bess beetles (Coleoptera: Passalidae). In: Capinera JL (ed) Encyclopedia of entomology. Springer, Dordrecht, pp 472–474Google Scholar
  61. Schuster JC, Schuster LB (1997) The evolution of social behavior in Passalidae (Coleoptera). In: Choe JC, Crespi BJ (eds) The evolution of social behavior in insects and arachnids. Cambridge University Press, Cambridge, pp 260–269CrossRefGoogle Scholar
  62. Schuster JC, Cano EB, Cardona C (2000) Un metodo sencillo para priorizar la conservacion de los bosques nubosos de guatemala, usando Passalidae (Coleoptera) como organismos inicadores. Acta Zool Mex 80:197–209Google Scholar
  63. Schuster JC, Cano EB, Reyes-Castillo P (2003) Proculus, giant Latin-American passalids: revision, phylogeny and biogeography. Acta Zool Mex 90:281–306Google Scholar
  64. Seeman OD (2017) Megisthanus leviathanicus sp. nov. (Parasitiformes: Megisthanidae), the largest known Mesostigmata, a symbiont of the beetle Mastachilus australasicus (Coleoptera: Passalidae). Int J Acarol 43(4):263–285CrossRefGoogle Scholar
  65. Suh S-O, Marshall CJ, McHugh JV, Blackwell M (2003) Wood ingestion by passalid beetles in the presence of xylose-fermenting gut yeasts. Mol Ecol 12:3137–3145CrossRefPubMedGoogle Scholar
  66. Szlávecz K, Pobozsny M (1995) Coprophagy in isopods and diplopods: a case for indirect interaction. Acta Zool Fenn 196:124–128Google Scholar
  67. Tanahashi M, Kubota K, Matsushita N, Togashi K (2010) Discovery of mycangia and the associated xylose-fermenting yeasts in stag beetles (Coleoptera: Lucanidae). Naturwissenschaften 97:311–317CrossRefPubMedGoogle Scholar
  68. Ulyshen MD (2015) Insect-mediated nitrogen dynamics in decomposing wood. Ecol Entomol 40:97–112CrossRefGoogle Scholar
  69. Ulyshen MD (2016) Wood decomposition as influenced by invertebrates. Biol Rev 91:70–85CrossRefPubMedGoogle Scholar
  70. Ulyshen MD, Wagner TL (2013) Quantifying arthropod contributions to wood decay. Methods Ecol Evol 4:345–352CrossRefGoogle Scholar
  71. Ulyshen MD, Müller J, Seibold S (2016) Bark coverage and insects influence wood decomposition: direct and indirect effects. Appl Soil Ecol 105:25–30CrossRefGoogle Scholar
  72. Urbina H, Schuster J, Blackwell M (2013) The gut of Guatemalan passalid beetles: a habitat colonized by cellobiose- and xylose-fermenting yeasts. Fungal Ecol 6:339–355CrossRefGoogle Scholar
  73. Uvarov BP (1928) Insect nutrition and metabolism: a summary of the literature. Trans R Entomol Soc London 76:255–343CrossRefGoogle Scholar
  74. Vitt LJ, Cooper WE Jr (1985) The evolution of sexual dimorphism in the skink Eumeces laticeps: an example of sexual selection. Can J Zool 63(5):995–1002CrossRefGoogle Scholar
  75. Woodruff RE (1973) Arthropods of Florida and neighboring land areas. Volume 8. The scarab beetles of Florida (Coleoptera: Scarabaeidae). Part 1. The Laparosticti (Subfamilies: Scarabaeinae, Aphodiinae, Hybosorinae, Ochodaeinae, Geotrupinae, Acanthocerinae). Florida Department of Agriculture and Consumer Services, Contribution no. 260. Bureau of Entomology, Gainesville, FLGoogle Scholar

Copyright information

© This is a U.S. government work and its text is not subject to copyright protection in the United States; however, its text may be subject to foreign copyright protection.  2018

Authors and Affiliations

  1. 1.USDA Forest Service, Southern Research StationAthensUSA

Personalised recommendations