Skip to main content

Saproxylic Insects in Tree Hollows

Part of the Zoological Monographs book series (ZM,volume 1)

Abstract

Tree hollows are fascinating microcosms that host a rich saproxylic insect assemblage. One of the most peculiar characteristics of this habitat is that both biotic and abiotic factors affect the evolution of the cavity making each unique and able to host a specialized fauna. Tree hollows are patchy habitats that provide a stable abiotic environment and long-lasting resources to a complex assembly of species from different trophic guilds (xylophagous, xylomycetophagous, saproxylophagous, saprophagous, predators, etc.), where species interactions seem to be an important piece of the puzzle of tree hollow diversity. Fourteen orders of insects and more than 800 species have been reported from tree hollows (primarily from Europe), with Coleoptera being the most diverse, followed by Diptera. However, knowledge of tree hollow insects and their requirements is still very asymmetric both geographically and taxonomically.

Forest reduction and fragmentation, climatic change, forestry and the abandonment of cultural practices are causing a decrease in tree hollow availability in natural and seminatural habitats, threatening the survival of the species that depend exclusively on them. Conservation and retention of hollowed trees has crucial importance for forest diversity maintenance worldwide; thus, actions should be urgently adopted.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-319-75937-1_21
  • Chapter length: 35 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   269.00
Price excludes VAT (USA)
  • ISBN: 978-3-319-75937-1
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   349.99
Price excludes VAT (USA)
Hardcover Book
USD   349.99
Price excludes VAT (USA)
Fig. 21.1
Fig. 21.2
Fig. 21.3
Fig. 21.4

References

  • Alexander KNA (2008) Tree biology and saproxylic Coleoptera: issues of definitions and conservation language. Rev Écol (Terre Vie) 63:1–5

    Google Scholar 

  • Andersson R, Östlund L (2004) Spatial patterns, density changes and implications on biodiversity for old trees in the boreal landscape of northern Sweden. Biol Conserv 118(4):443–453

    CrossRef  Google Scholar 

  • Apolinário FE, Martius C (2004) Ecological role of termites (Insecta, Isoptera) in tree trunks in central Amazonian rain forests. For Ecol Manag 194:23–28

    CrossRef  Google Scholar 

  • Atay E, Jansson N, Gürkan T (2012) Saproxylic beetles on old hollow oaks (Quercus spp.) in a small isolated area in southern Turkey (Insecta: Coleoptera). Zool Middle East 57:105–114

    CrossRef  Google Scholar 

  • Audisio P, Brustel H, Carpaneto GM, Coletti G, Mancini E, Piattella E, Trizzino M, Dutto M, Antonini G, De Biase A (2007) Updating the taxonomy and distribution of the European Osmoderma, and strategies for their conservation (Coleoptera, Scarabaeidae, Cetoniinae). Fragm Entomol 39:273–290

    CrossRef  Google Scholar 

  • Audisio P, Brustel H, Carpaneto GM, Coletti G, Mancini E, Trizzino M, Antonini G, De Biase A (2009) Data on molecular taxonomy and genetic diversification of the European Hermit beetles, a species complex of endangered insects (Coleoptera: Scarabaeidae, Cetoniinae, Osmoderma). J Zool Syst Evol Res 47(1):88–95

    CrossRef  Google Scholar 

  • Bergman KO, Jansson N, Claesson K, Palmer MW, Milberg P (2012) How much and at what scale? Multiscale analyses as decision support for conservation of saproxylic oak beetles. For Ecol Manag 265:133–141

    CrossRef  Google Scholar 

  • Bezborodov VG (2015) The genus Osmoderma (Coleoptera, Scarabaeidae, Trichiinae) in Siberia and the Russian Far East. Entomol Rev 95(8):1088–1098

    CrossRef  Google Scholar 

  • Bhusal P, Czeszczewik D, Walankiewicz W, Churski M, Baral R, Lamichhane BR, Mikusiński G (2015) Availability of tree cavities in a sal forest of Nepal. iForest 9:217–225. https://doi.org/10.3832/ifor1493–008

    CrossRef  Google Scholar 

  • Binon M, Gicquel JM, Secchi F (1998) Les coléoptères d’une cavité de chêne, en forêt domaniale d’orléans. L. Entomologiste 54:65–67

    Google Scholar 

  • Bonneil P, Bouget C, Brustel H, Vallet A (2009) Insect sampling methods 33–66. In: Nageleisen LM, Bouget C (eds) Forest insect studies: methods and techniques. Key considerations for standardisation. An overview of the reflections of the Entomological Forest Inventories working group (Inv.Ent.For.). Les Dossiers Forestiers no. 19, Office National des Forêts, pp 33–66

    Google Scholar 

  • Bouget C, Brustel H, Zagatti P (2008a) The French information system on saproxylic beetle ecology (FRISBEE): an ecological and taxonomical database to help with the assessment of forest conservation status. Rev Écol (Terre Vie) 10:33–36

    Google Scholar 

  • Bouget C, Brustel H, Brin A, Noblecourt T (2008b) Sampling Saproxylic beetles with window flight traps: methodological insights. Rev Ecol 63:13–24

    Google Scholar 

  • Bouget C, Larrieu L, Brin A (2014) Key features for saproxylic beetle diversity derived from a rapid assessment in temperate forest. Ecol Indic 36:656–664

    CrossRef  Google Scholar 

  • Boyle WA, Ganong CN, Clark DB, Hast MA (2008) Density, distribution, and attributes of tree cavities in an old–growth tropical rain forest. Biotropica 40(2):241–245. https://doi.org/10.1111/j.1744–7429.2007.00357.x

    CrossRef  Google Scholar 

  • Buse J, Ranius T, Assmann T (2008) An endangered longhorn beetle associated with old oaks and its possible role as an ecosystem engineer. Conserv Biol 22:329–337

    CrossRef  CAS  PubMed  Google Scholar 

  • Buse J, Assmann T, Friedman ALL, Rittner O, Pavlicek T (2013) Wood-inhabiting beetles (Coleoptera) associated with oaks in a global biodiversity hotspot: a case study and checklist for Israel. Insect Conserv Divers. https://doi.org/10.1111/icad.12023

    CrossRef  Google Scholar 

  • Bußler H, Müller J (2009) Vacuum cleaning for conservationists: a new method for inventory of Osmoderma eremita (Scop., 1763) (Coleoptera: Scarabaeidae) and other inhabitants of hollow trees in Natura 2000 areas. J Insect Conserv 13:355–359. https://doi.org/10.1007/s10841–008–9171–4

    CrossRef  Google Scholar 

  • Carlsson S, Bergman KO, Jansson N, Ranius T, Milberg P (2016) Boxing for biodiversity: evaluation of an artificially created decaying wood hábitat. Biodivers Conserv 25:393–405. https://doi.org/10.1007/s10531–016–1057–2

    CrossRef  Google Scholar 

  • Carpaneto GM, Mazziotta A, Coletti G, Luiselli L, Audisio P (2010) Conflict between insect conservation and public safety: the case study of a saproxylic beetle (Osmoderma eremita) in urban parks. J Insect Conserv 14:555–565

    CrossRef  Google Scholar 

  • Chapman AJ, Kinghorn JM (1955) Window flight traps for insects. Can Entomol 37:46–47

    CrossRef  Google Scholar 

  • Chiari S, Marini L, Audisio P, Ranius T (2012) Habitat of an endangered saproxylic beetle, Osmoderma eremita, in Mediterranean woodlands. Ecoscience 19:299–307

    CrossRef  Google Scholar 

  • Cockle KL, Martin K, Wesolowski T (2011) Woodpeckers, decay, and the future of cavity–nesting vertebrate communities worldwide. Front Ecol Environ 9(7):377–382. https://doi.org/10.1890/110013

    CrossRef  Google Scholar 

  • Colas G (1974) Guide de l’entomologiste. L’entomologiste sur le terrain; préparation et conservation des insectes et des collections. Boubée N. & Cie, Paris

    Google Scholar 

  • Colombo R, Braud Y, Danflous S (2013) Contribution à la connaissance de Dendroleon pantherinus (Fabricius 1787) (Neuroptera: Myrmeleontidae). Revue de l’Association Roussillonnaise d’Entomologie XXII(2):47–53

    Google Scholar 

  • Dajoz R (1966) Ecologie et biologie des coléoptères xylophages de la hêtraie. Vie et Milieu 17:525–736

    Google Scholar 

  • Dajoz R (1998) Les insectes et la fôret: rôle et diversité des insectes dans le milieu forestier. Tec & Doc, Paris

    Google Scholar 

  • Daugherty MP, Juliano SA (2003) Leaf scraping beetle feces are a food resource for tree hole mosquito larvae. Am Midl Nat 150(1):181–184

    CrossRef  Google Scholar 

  • Donald PF, Sanderson FJ, Burfield IJ, Bommel FPJ (2006) Further evidence of continent-wide impacts of agricultural intensification on European farmland birds, 1990–2000. Agric Ecosyst Environ 116:189–196

    CrossRef  Google Scholar 

  • Douwes P, Abenius J, Cederberg B, Wahlstedt U, Hall K, Starkenberg M, Reisborg C, Östman T (2012) Nationalnyckeln till Sveriges flora och fauna. Steklar: Myror-getingar. Hymenoptera: Formicidae-Vespidae. ArtDatabanken, SLU, Uppsala

    Google Scholar 

  • Eliasson P, Nilsson SG (2002) ‘You should hate young oaks and young noblemen’. The environmental history of oaks in eighteenth– and nineteenth–century Sweden. Environ Hist 7:659–677

    CrossRef  Google Scholar 

  • Eltz T, Brühl CA, Imiyabir Z, Linsenmair KE (2003) Nesting and nest trees of stingless bees (Apidae: Meliponini) in lowland dipterocarp forest in Sabah, Malaysia, with implications for forest management. For Ecol Manag 172:201–313

    CrossRef  Google Scholar 

  • Fan Z, Shifley SR, Thompson FR III, Larsen DR (2004) Simulated cavity tree dynamics under alternative timber harvest regimes. For Ecol Manag 193:399–412

    CrossRef  Google Scholar 

  • Fincke OM (1992) Interspecific competition for tree holes: consequences for mating systems and coexistence in Neotropical damselflies. Am Nat 139:80–101

    CrossRef  Google Scholar 

  • Fincke OM (1994) Population regulation of a tropical damselfly in the larval stage by food limitation, cannibalism, intraguild predation and habitat drying. Oecologia 100:118–127

    CrossRef  PubMed  Google Scholar 

  • Fincke OM (1999) Organization of predator assemblages in Neotropical tree holes: effects of abiotic factors and priority. Ecol Entomol 24:13–23

    CrossRef  Google Scholar 

  • García–López A, Galante E, Micó E (2016) Saproxylic beetle assemblage selection as determining factor of species distributional patterns: implications for conservation. J Insect Sci 45:1–7

    Google Scholar 

  • Gibbons P, Lindenmayer D (2002) Tree hollows and wildlife conservation in Australia. CSIRO, Collingwood

    Google Scholar 

  • Gibbs JP, Hunter ML, Melvin SM (1993) Snag availability and communities of cavity–nesting birds in tropical versus temperate forests. Biotropica 25:236–241

    CrossRef  Google Scholar 

  • Goodburn JM, Lorimer CG (1998) Cavity trees and coarse woody debris in old-growth and managed northern hardwood forests in Wisconsin and Michigan. Can J For Res 28(3):427–438. https://doi.org/10.1139/x98-014

    CrossRef  Google Scholar 

  • Gouix N (2011) Gestion forestière et Biodiversité, les enjeux de conservation d’une espèce parapluie: Limoniscus violaceus (Coleoptera). PhD Thesis, UPMC Sorbonne Universités

    Google Scholar 

  • Gouix N, Brustel H (2012) Emergence trap, a new method to survey Limoniscus violaceus (Coleoptera: Elateridae) from hollow trees. Biodivers Conserv 21:421–436

    CrossRef  Google Scholar 

  • Gouix N, Sebek P, Valladares L, Brustel H, Brin A (2015) Habitat requirements of the violet click beetle (Limoniscus violaceus), an endangered umbrella species of basal hollow trees. Insect Conserv Divers 8:418–427

    CrossRef  Google Scholar 

  • Grove SJ, Stork NE (1999) The conservation of saproxylic insects in tropical forests: a research agenda. J Insect Conserv 3:67–74

    CrossRef  Google Scholar 

  • Harlan NP, Paradise CJ (2006) Do habitat size and shape modify abiotic factors and communities in artificial treeholes? Community Ecol 7(2):211–222

    CrossRef  Google Scholar 

  • Hoffmann CH (1939) The biology and taxonomy of the Nearctic species of Osmoderma (Coleoptera, Scarabaeidae). Ann Entomol Soc Am 32(3):510–525. https://doi.org/10.1093/aesa/32.3.510

    CrossRef  Google Scholar 

  • Horak J (2017) Insect ecology and veteran trees. J Insect Conserv 21:1–5

    CrossRef  Google Scholar 

  • Hunter JT (2015) Seasonality of climate drives the number of tree hollows in eastern Australia: implications of a changing climate. Int J Ecol 2015:190637. https://doi.org/10.1155/2015/190637

    CrossRef  Google Scholar 

  • Jansson N (2009) Habitat requirements and preservation of the beetle assemblages associated with hollow oaks. Phd thesis, Linköping University, Linköping

    Google Scholar 

  • Jansson N, Ranius T, Larsson A, Milberg P (2009) Boxes mimicking tree hollows can help conservation of saproxylic beetles. Biodivers Conserv 18:3891–3908

    CrossRef  Google Scholar 

  • Jönsson N, Méndez M, Ranius T (2004) Nutrient richness of wood mould in tree hollows with the scarabaeid beetle Osmoderma eremita. Anim Biodivers Conserv 27(2):79–82

    Google Scholar 

  • Keilin D (1927) Fauna of a horse–chestnut tree (Aesculus hippocastanum). Dipterous larvae and their parasites. Parasitology 19:368–374

    CrossRef  Google Scholar 

  • Kelner-Pillault S (1974) Étude écologique du peuplement entomologique des terreaux d’arbres creux (châtaigners et saules). Bull Ecol 5:123–156

    Google Scholar 

  • Khazan ES (2014) Tests of biological corridor efficacy for conservation of a Neotropical giant damselfly. Biol Conserv 177:117–125

    CrossRef  Google Scholar 

  • Khazan ES, Bright EG, Beyer JE (2015) Land management impacts on tree hole invertebrate communities in a Neotropical rainforest. J Insect Conserv 19:681–690. https://doi.org/10.1007/s10841–015–9791–4

    CrossRef  Google Scholar 

  • Kirby KJ, Watkins C (eds) (1998) The ecological history of European forests. CAB International, Oxon

    Google Scholar 

  • Kitching RL (1971) An ecological study of water–filled tree–holes and their position in the woodland ecosystem. J Anim Ecol 40:281–302

    CrossRef  Google Scholar 

  • Kosinski Z (2006) Factors affecting the occurrence of middle spotted and great spotted woodpeckers in deciduous forests—a case study from Poland. Ann Zool Fenn 43:198–210

    Google Scholar 

  • Kraus D, Bütler R, Krumm F, Lachat T, Larrieu L, Mergner U, Paillet Y, Rydkvist T, Schuck A, Winter S (2016) Catalogue of tree microhabitats – reference field list. Integrate+Technical Paper, 16p

    Google Scholar 

  • Landvik M, Niemelä P, Roslin T (2015) Opportunistic habitat use by Osmoderma barnabita (Coleoptera: Scarabaeidae), a saproxylic beetle dependent on tree cavities. Insect Conserv Divers 9:38–48. https://doi.org/10.1111/icad.12141

    CrossRef  Google Scholar 

  • Leppik E, Jueriado I, Liira J (2011) Changes in stand structure due to the cessation of traditional land use in wooded meadows impoverish epiphytic lichen communities. Lichenologist 43:257–274

    CrossRef  Google Scholar 

  • Lindenmayer DB, Laurance WF, Franklin JF (2012) Global decline in large old trees. Science 338:1305. https://doi.org/10.1126/science.1231070

    CrossRef  PubMed  CAS  Google Scholar 

  • Losos EC, Leigh EG Jr (2004) Tropical forest diversity and dynamism. University of Chicago Press, Chicago, IL

    Google Scholar 

  • Manning AD, Gibbons P, Fischer J, Oliver D, Lindenmayer DB (2013) Hollow futures? Tree decline, lag effects and hollow–dependent species. Anim Conserv 16:395–403

    CrossRef  Google Scholar 

  • Marcos-García MA, Micó E, Quinto J, Briones R, Galante E (2011) Lo que las oquedades esconden. Cuad Biodivers 34:3–7. https://doi.org/10.14198/cdbio.2011.34

    CrossRef  Google Scholar 

  • Maziarz M, Broughton RK, Wesolowski T (2017) Microclimate in tree cavities and nest–boxes: implications for hole–nesting birds. For Ecol Manag 389:306–313

    CrossRef  Google Scholar 

  • Medvedev SI (1960) “Genus Osmoderma Serv.,” in The Fauna of the USSR. Coleoptera. Scarab Beetles (Scarabaeidae). Subfam. Euchirinae, Dynastinae, Glaphyrinae, Trichiinae. Acad. Sci. USSR, Moscow, Leningrad 10(4):376–389 [in Russian]

    Google Scholar 

  • Micó E, Marcos-García A, Quinto J, Ramírez A, Ríos S, Padilla A, Galante E (2010) Los árboles añosos de las dehesas ibéricas, un importante reservorio de insectos saproxylícos amenazados. Elytron 24:1–9

    Google Scholar 

  • Micó E, Juárez M, Sánchez A, Galante E (2011) Action of the saproxylic scarab larva Cetonia aurataeformis (Coleoptera: Scarabaeoidea: Cetoniidae) on woody substrates. J Nat Hist 45:41–42

    CrossRef  Google Scholar 

  • Micó E, García-López A, Sánchez A, Juárez M, Galante E (2015) What can physical, biotic and chemical features of a tree hollow tell us about their associated diversity? J Insect Conserv 19:141–153

    CrossRef  Google Scholar 

  • Milberg P, Bergman K-O, Johansson H, Jansson N (2014) Low host-tree preferences among saproxylic beetles: a comparison of four deciduous species. Insect Conserv Divers 7:508–522

    CrossRef  Google Scholar 

  • Müller J, Jarzabek-Müller A, Bussler H, Gossner MM (2013) Hollow beech trees identified as keystone structures for saproxylic beetles by analyses of functional and phylogenetic diversity. Anim Conserv 17:154–162

    CrossRef  Google Scholar 

  • N’Dri AB, Gignoux J, Konaté S, Dembélé A, Aïdara D (2011) Origin of trunk damage in West African savanna trees: the interaction of fire and termites. J Trop Ecol 27:269–278

    CrossRef  Google Scholar 

  • Nageleisen LM, Bouget C (eds) (2009) Forest insect studies: methods and techniques. Key considerations for standardisation. An overview of the reflections of the “Entomological Forest Inventories” working group (Inv.Ent.For.). Les Dossiers Forestiers no. 19, Office National des Forêts

    Google Scholar 

  • Newton I (1998) Population limitation in birds. Academic Press, San Diego

    Google Scholar 

  • Nieto A, Alexander KNA (2010) European red list of saproxylic beetles. Publications Office of the European Union, Luxembourg

    Google Scholar 

  • Nilsson SG (1984) The evolution of nest–selection among hole–nesting birds: the importance of nest predation and competition. Ornis Scand 15:167–175

    CrossRef  Google Scholar 

  • Nilsson SG (1997) Forests in the temperate–boreal transition: natural and manmade features. Ecol Bull 46:61–71

    Google Scholar 

  • Økland B (1996) A comparison of three methods of trapping saproxylic beetles. Eur J Entomol 93:195–209

    Google Scholar 

  • Palm T (1959) Die Holz– und Rindenkäfer der süd– und mittelschwedischen Laubbäume. Opusc Entomol Suppl XVI, Lund

    Google Scholar 

  • Park O, Auerbach S (1954) Study of the tree–hole complex with emphasis on quantitative aspects of the fauna. Ecology 35(2):208–222

    CrossRef  Google Scholar 

  • Park O, Auerbach S, Corley G (1950) The tree–hole hábitat with emphasis on the pselaphid beetle fauna. Bull Chicago Acad Sci 9:19–56

    Google Scholar 

  • Pattanavibool A (1993) Influences of forest management practices on cavity resources in mixed deciduous forest in Thailand. Master Thesis, Oregon State University

    Google Scholar 

  • Perry DH, Lenz M, Watson JAL (1985) Relationships between fire, fungal rots and termite damage in Australian forest trees. Aust Forestry 48:46–53

    CrossRef  Google Scholar 

  • Pilskog HE, Birkemoe T, Framstad E, Sverdrup–Thygeson A (2016) Effect of habitat size, quality, and isolation on functional groups of beetles in hollow oaks. J Insect Sci 16(1):26. https://doi.org/10.1093/jisesa/iev145

    CrossRef  PubMed  PubMed Central  Google Scholar 

  • Quinto J, Marcos-García MA, Díaz-Castelazo C, Rico-Gray V, Brustel H, Galante E, Micó E (2012) Breaking down complex saproxylic communities: understanding sub–networks structure and implications to network robustness. PLoS One 7(9):e45062. https://doi.org/10.1371/journal.pone.0045062

    CrossRef  PubMed  PubMed Central  CAS  Google Scholar 

  • Quinto J, Marcos–García MA, Brustel H, Galante E, Micó E (2013) Effectiveness of three sampling methods to survey saproxylic beetle assemblages in Mediterranean woodland. J Insect Conserv 17:765–776. https://doi.org/10.1007/s10841–013–9559–7

    CrossRef  Google Scholar 

  • Quinto J, Micó E, Galante E, Martinez-Falcón A, Marcos-García MA (2014) Influence of tree hollow characteristics on the diversity of saproxylic insect guilds in Iberian Mediterranean woodlands. Insect Conserv Divers 18(5):981–992. https://doi.org/10.1007/s10841–014–9705–x

    CrossRef  Google Scholar 

  • Ramírez-Hernández A, Micó E, Marcos-García MA, Brustel H, Galante E (2014) The “dehesa”, a key ecosystem in maintaining the diversity of Mediterranean saproxylic insects (Coleoptera and Diptera: Syrphidae). Biodivers Conserv 23:2069–2086

    CrossRef  Google Scholar 

  • Ranius T (2002) Influence of stand size and quality of tree hollows on saproxylic beetles in Sweden. Biol Conserv 103:85–91

    CrossRef  Google Scholar 

  • Ranius T (2007) Extinction risks in metapopulations of a beetle inhabiting hollow trees predicted from time series. Ecography 30:716–726

    CrossRef  Google Scholar 

  • Ranius T, Hedin J (2001) The dispersal rate of a beetle, Osmoderma eremita, living in tree hollows. Oecologia 126:363–370

    CrossRef  PubMed  Google Scholar 

  • Ranius T, Jansson N (2000) The influence of forest regrowth, original canopy cover and tree size on saproxylic beetles associated with old oaks. Biol Conserv 95:85–94

    CrossRef  Google Scholar 

  • Ranius T, Jansson N (2002) A comparison of three methods to survey saproxylic beetles in hollow oaks. Biodivers Conserv 11(10):1759–1771. https://doi.org/10.1023/A:1020343030085

  • Ranius T, Nilsson SG (1997) Habitat of Osmoderma eremita Scop. (Coleoptera: Scarabaeidae), a beetle living in hollow trees. J Insect Conserv 1:193–204

    CrossRef  Google Scholar 

  • Ranius T, Wilander P (2000) Occurrence of Larca lata H.J. Hansen (Pseudoscorpionida: Garypidae) and Allochernes wideri C.L. Koch (Pseudoscorpionida: Chernetidae) in tree hollows in relation to habitat quality and density. J Insect Conserv 4:23–31

    CrossRef  Google Scholar 

  • Ranius T, Aguado LO, Antonsson K et al (2005) Osmoderma eremita (Coleoptera, Scarabaeidae, Cetoniinae) in Europe. Anim Biodivers Conserv 28(1):1–44

    Google Scholar 

  • Ranius T, Niklasson M, Berg N (2009) Development of tree hollows in pedunculate oak (Quercus robur). For Ecol Manag 257:303–310

    CrossRef  Google Scholar 

  • Ratcliffe B (1971) Descriptions of the Larva and Pupa of Osmoderma subplanata (Casey) and Cremastocheilus wheeleri LeConte (Coleoptera: Scarabaeidae). J Kansas Entomol Soc 50(3):363–370

    Google Scholar 

  • Ratcliffe B (1991) The Scarab beetles of Nebraska. Bull Univ Nebraska State Mus 12:330p

    Google Scholar 

  • Read HJ (ed) (1996) Pollard and Veteran Tree Management II – incorporating the Proceedings of the Meeting Hosted by the Corporation of London at Epping Forest in 1993. Richmond, Berkshire, 141p

    Google Scholar 

  • Redolfi De Zan L, Bellotti F, D’Amato D, Carpaneto GM (2014) Saproxylic beetles in three relict beech forests of central Italy: analysis of environmental parameters and implications for forest management. For Ecol Manag 328:229–244

    CrossRef  Google Scholar 

  • Reemer M (2005) Saproxylic hoverflies benefit by modern forest management (Diptera: Syrphidae). J Insect Conserv 9:49–59. https://doi.org/10.1007/s10841–004–6059–9

    CrossRef  Google Scholar 

  • Remm J, Lohmus A (2011) Tree cavities in forests – the broad distribution pattern of a keystone structure for biodiversity. For Ecol Manag 262(4):579–585. https://doi.org/10.1016/j.foreco.2011.04.028

    CrossRef  Google Scholar 

  • Ricarte A, Marcos-García MA, Rotheray GE, Hancock EG (2007) The early stages and breeding sites of 10 Cerioidini Flies (Diptera: Syrphidae). Ann Entomol Soc Am 100(6):914–924

    CrossRef  Google Scholar 

  • Rotheray GE, Zumbado M, Hancock G, Thompson C (2000) Remarkable aquatic predators in the genus Ocyptamus (Diptera, Syrphidae). Studia dipterologica 7:385–389

    Google Scholar 

  • Rotheray GE, Hancock G, Hewitt S, Horsfield D, MacGowan I, Robertson D, Watt K (2001) The biodiversity and conservation of saproxylic diptera in Scotland. J Insect Conserv 5:77–85

    CrossRef  Google Scholar 

  • Ruxton GD (2014) Why are so many trees hollow? Biol Lett 10:20140555. https://doi.org/10.1098/rsbl.2014.0555

    CrossRef  PubMed  PubMed Central  Google Scholar 

  • Sánchez A, Micó E, Eduardo E, Juárez M (2017) Chemical transformation of Quercus wood by Cetonia larvae (Coleoptera: Cetoniidae): an improvement of carbon and nitrogen available in saproxylic environments. Eur J Soil Biol 78:57–65. https://doi.org/10.1016/j.ejsobi.2016.12.003

    CrossRef  CAS  Google Scholar 

  • Sánchez-Galván IR, Quinto J, Micó E, Galante E, Marcos-García MA (2014) Facilitation among Saproxylic insects inhabiting tree hollows in a Mediterranean forest: the case of cetonids (Coleoptera: Cetoniidae) and syrphids (Diptera: Syrphidae). Environ Entomol 43(2):336–343. https://doi.org/10.1603/EN13075

    CrossRef  PubMed  Google Scholar 

  • Sánchez-Galván I, Marcos-García MA, Galante E, Azeria ET, Micó E (2018) Unraveling Saproxylic insect interactions in tree hollows from Iberian Mediterranean forest. Environ Entomol. 1–9. https://doi.org/10.1093/ee/nvy008

  • Schmidl J, Sulzer P, Kitching RL (2008) The insect assemblage in water filled tree–holes in a European temperate deciduous forest: community composition reflects structural, trophic and physicochemical factors. Hydrobiologia 598:285–303. https://doi.org/10.1007/s10750–007–9163–5

    CrossRef  Google Scholar 

  • Schoener TW (1989) Food webs from the small to the large. Ecology 70:1559–1589

    CrossRef  Google Scholar 

  • Sebek P, Cizek L, Hauck D, Schlaghamersky J (2012) Saproxylic beetles in an isolated pollard willow stand and their association with Osmoderma barnabita (Coleoptera: Scarabaeidae). In: Jurc M (ed) Saproxylic beetles in Europe: monitoring, biology and conservation. Studia Forestalia Slovenica, Ljubljana, pp 67–72

    Google Scholar 

  • Sebek P, Altman J, Platek M, Cizek L (2013) Is active management the key to the conservation of saproxylic biodiversity? Pollarding promotes the formation of tree hollows. PLoS One 8:e60456

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  • Seguchi S, Sawahata T (2016) Osmoderma opicum in the warm-temperate evergreen forest on Mt. Kasugayama, Nara, Japan (in Japanese). 近畿大学農学部紀要 49:61–65

    Google Scholar 

  • Siitonen J (2012) Microhabitats. In: Stokland J, Siitonen J, Jonsson BG (eds) Biodiversity in dead wood. Cambridge University Press, Cambridge, pp 150–182

    CrossRef  Google Scholar 

  • Siittonen J, Jonsson BG (2012) Other associations with dead woody material. In: Stokland J, Siitonen J, Jonsson BG (eds) Biodiversity in dead wood. Cambridge University Press, Cambridge, pp 58–81

    CrossRef  Google Scholar 

  • Sirami C, Jay–Robert P, Brustel H, Valladares L, Le Guilloux S, Martin JL (2008) Saproxylic beetle assemblages of old holm–oak trees in the Mediterranean region: role of a keystone structure in a changing heterogeneous landscape. Rev Ecol (Terre Vie) 63:93–106

    Google Scholar 

  • Speight MCD (1989) Saproxylic invertebrates and their conservation. Council of Europe, Strasbourg

    Google Scholar 

  • Speight MCD (2016) Species accounts of European Syrphidae 2016. Syrph the Net, the database of European Syrphidae (Diptera), vol 93. Syrph the Net, Dublin

    Google Scholar 

  • Srivastava DS, Lawton JH (1998) Why more productive sites have more species: an experimental test of theory using tree–hole communities. Am Nat 152(4):510529. https://doi.org/10.1086/286187, PMID:18811361

    PubMed  CAS  Google Scholar 

  • Stokland J, Siitonen J, Jonsson BG (eds) (2012) Biodiversity in dead wood. Cambridge University Press, Cambridge

    Google Scholar 

  • Stubbs AE (1982) Hoverflies as primary woodland indicators with reference to Warncliffe Wood. Sorby Rec 20:62–67

    Google Scholar 

  • Svedrup–Thygeson A, Skarpaas O, Ødegaard F (2010) Hollow oaks and beetle conservation: the significance of the surroundings. Biodivers Conserv 19:837–852. https://doi.org/10.1007/s10531–009–9739–7

    CrossRef  Google Scholar 

  • Taylor AR, Ranius T (2014) Tree hollows harbour a specialised oribatid mite fauna. J Insect Conserv 18:39–55. https://doi.org/10.1007/s10841–014–9613–0

    CrossRef  Google Scholar 

  • Vázquez L, Renton K (2015) High density of tree–cavities and snags in tropical dry forest of western Mexico raises questions for a latitudinal gradient. PLoS One 10(1):e0116745. https://doi.org/10.1371/journal.pone.0116745

    CrossRef  PubMed  PubMed Central  CAS  Google Scholar 

  • Warakai D, Okena DS, Igag P, Opiang M, Mack AL (2013) Tree cavity–using wildlife and the potential of artificial nest boxes for wildlife management in New Guinea. Trop Conserv Sci 6(6):711–733

    CrossRef  Google Scholar 

  • Werner PA, Prio LD (2007) Tree-piping termites and growth and survival of host trees in savanna woodland of north Australia. J Trop Ecol 23:611–622

    CrossRef  Google Scholar 

  • Wormington K, Lamb L (1999) Tree hollow development in wet and dry sclerophyll eucalypt forest in south–east Queensland, Australia. Austr For 62(4):336–345. https://doi.org/10.1080/00049158.1999.10674801

    CrossRef  Google Scholar 

  • Wright DH (1983) Species–energy theory: an extension of species area theory. Oikos 41:496–506

    CrossRef  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Estefanía Micó .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2018 This is a U.S. government work and its text is not subject to copyright protection in the United States; however, its text may be subject to foreign copyright protection.

About this chapter

Verify currency and authenticity via CrossMark

Cite this chapter

Micó, E. (2018). Saproxylic Insects in Tree Hollows. In: Ulyshen, M. (eds) Saproxylic Insects. Zoological Monographs, vol 1. Springer, Cham. https://doi.org/10.1007/978-3-319-75937-1_21

Download citation