Skip to main content

The Interaction of Environment and Chronological and Developmental Time

  • Chapter
  • First Online:
Development and Environment

Abstract

As organisms develop from embryos to adults, adaptive phenotypes must emerge to meet the demands of the habitat. This physiological and morphological transformation occurs along a continuum, where the emerging traits are often illustrated as landmarks charted along a predictable chronological timeline. Chronological time is measured according to astronomical phenomena, in hours, days, weeks, months, and years. However, developmental timing is largely driven by innate molecular oscillators that are independent of chronological time and species-specific. Environmental stressors can alter the timing of emergence of developmental phenotypes, creating further discord between developmental time and chronological time. Further, variation in the timing of emergence of developmental phenotypes is the norm, rather than the exception both within and between species. Such examples of environmentally driven variation of developmental timing abound, including alteration in development speed within chronological time and alteration of the sequence of emergence of landmark traits. It follows that if treatment groups (or species) are at different developmental stages, experimental comparisons become increasingly complicated. Within the context of the growing use of developmental model organisms in environmental sciences, the effect of alteration of developmental timing is particularly relevant. This is well illustrated in several examples utilized here to describe how alteration of developmental time can be a maladaptive consequence, or an adaptive compensatory response to environmental stressors, which can be selected for during evolution. Thus, such alterations of developmental timing can be measured and accounted for when designing developmental studies and in the interpretation of resultant data.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Albertson RC, Cresko W, Detrich HW 3rd, Postlethwait JH (2009) Evolutionary mutant models for human disease. Trends Genet 25:74–81

    Article  CAS  PubMed  Google Scholar 

  • Amaral FG, Castrucci AM, Cipolla-Neto J, Poletini MO, Mendez N, Richter HG, Sellix MT (2014) Environmental control of biological rhythms: effects on development, fertility and metabolism. J Neuroendocrinol 26:603–612

    Article  CAS  PubMed  Google Scholar 

  • Bertrand S, Aldea D, Oulion S, Subirana L, de Lera AR, Somorjai I, Escriva H (2015) Evolution of the role of RA and FGF signals in the control of somitogenesis in chordates. PLoS One 10:e0136587

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bickham JW (2011) The four cornerstones of evolutionary toxicology. Ecotoxicology 20:497–502

    Article  CAS  PubMed  Google Scholar 

  • Bielecka ZF, Maliszewska-Olejniczak K, Safir IJ, Szczylik C, Czarnecka AM (2017) Three-dimensional cell culture model utilization in cancer stem cell research. Biol Rev 92:1505–1520

    Article  PubMed  Google Scholar 

  • Bininda-Emonds ORP, Jeffery JE, Sanchez-Villagra MR, Hanken J, Colbert M, Pieau C, Selwood L, ten Cate C, Raynaud A, Osabutey CK, Richardson MK (2007) Forelimb-hindlimb developmental timing changes across tetrapod phylogeny. BMC Evol Biol 7:182

    Article  PubMed  PubMed Central  Google Scholar 

  • Bolker JA, Hill CR (2000) Pigmentation development in hatchery-reared flatfishes. J Fish Biol 56:1029–1052

    Article  Google Scholar 

  • Burggren W (2016) Epigenetic inheritance and its role in evolutionary biology: re-evaluation and new perspectives. Biology 5:24

    Article  PubMed Central  Google Scholar 

  • Burggren W (2018) Developmental phenotypic plasticity helps bridge stochastic weather events associated with climate change. J Exp Biol 221. https://doi.org/10.1242/jeb.161984

    Article  PubMed  Google Scholar 

  • Burggren W, Bagatto B (2008) Cardiovascular anatomy and physiology of larval fishes. In: Finn N, Kapoor BG (eds) Fish larval physiology. Oxford & IBH Publishing Co. Pvt. Ltd., New Delhi, pp 119–161

    Google Scholar 

  • Burggren W, Dubansky B, Martinez-Bautista N (2017) Cardiovascular development of embryonic and larval fishes. In: Gamperl AK, Gillis TE (eds) Fish physiology. Elsevier, Amsterdam

    Google Scholar 

  • Burggren WW (2014) Epigenetics in comparative animal physiology - or - Lamarck is lookin’ pretty good these days. J Exp Biol 217:682–689

    Article  PubMed  Google Scholar 

  • Burggren WW (2015) Dynamics of epigenetic phenomena: intergenerational and intragenerational phenotype ‘washout’. J Exp Biol 218:80–87

    Article  PubMed  Google Scholar 

  • Burggren WW, Reyna KS (2011) Developmental trajectories, critical windows and phenotypic alteration during cardio-respiratory development. Respir Physiol Neurobiol 178:13–21

    Article  PubMed  Google Scholar 

  • Burggren WW, Santin JF, Antich MR (2016) Cardio-respiratory development in bird embryos: new insights from a venerable animal model. Rev Bras Zootec 45:709–728

    Article  Google Scholar 

  • Burggren WW, Warburton S (2007) Amphibians as animal models for laboratory research in physiology. ILAR J 48:260–269

    Article  CAS  PubMed  Google Scholar 

  • Carlos-Wallace FM, Zhang L, Smith MT, Rader G, Steinmaus C (2016) Parental, in utero, and early-life exposure to benzene and the risk of childhood leukemia: a meta-analysis. Am J Epidemiol 183:1–14

    Article  PubMed  Google Scholar 

  • Chauvigne F, Fjelldal PG, Cerda J, Finn RN (2016) Auto-adhesion potential of extraocular aqp0 during teleost development. PLoS One 11:e0154592

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Christ E, Korf HW, von Gall C (2012) When does it start ticking? Ontogenetic development of the mammalian circadian system. In: Kalsbeek A, Merrow M, Roenneberg T, Foster RG (eds) Neurobiology of circadian timing, pp 105–118

    Chapter  Google Scholar 

  • Clark BW, Di Giulio RT (2012) Fundulus heteroclitus adapted to PAHs are cross-resistant to multiple insecticides. Ecotoxicology 21:465–474

    Article  CAS  PubMed  Google Scholar 

  • Colbert MW, Rowe T (2008) Ontogenetic sequence analysis: using parsimony to characterize developmental sequences and sequence polymorphism. J Exp Zool B Mol Dev Evol 310:398–416

    Article  PubMed  Google Scholar 

  • Colman JR, Twiner MJ, Hess P, McMahon T, Satake M, Yasumoto T, Doucette GJ, Ramsdell JS (2005) Teratogenic effects of azaspiracid-1 identified by microinjection of Japanese medaka (Oryzias latipes) embryos. Toxicon 45:881–890

    Article  CAS  PubMed  Google Scholar 

  • De Beer G (1958) Embryos and ancestors. Clarendon Press, Oxford

    Google Scholar 

  • Dickins TE, Rahman Q (2012) The extended evolutionary synthesis and the role of soft inheritance in evolution. Proc R Soc B-Biol Sci 279:2913–2921

    Article  Google Scholar 

  • Ditty JG, Shaw RF, Fuiman LA (2005) Larval development of five species of blenny (Teleostei: Blenniidae) from the Western Central North Atlantic, with a synopsis of blennioid family characters. J Fish Biol 66:1261–1284

    Article  Google Scholar 

  • Dubansky B, Rice CD, Galvez F (2017) Biomarkers of aryl-hydrocarbon receptor activity in gulf killifish (Fundulus grandis) from the norther Gulf of Mexico following the Deepwater Horizon oil spill. Arch Environ Contam Toxicol 73(1):63–75

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dubansky B, Whitehead A, Miller J, Rice CD, Galvez F (2013) Multi-tissue molecular, genomic, and developmental effects of the Deepwater Horizon oil spill on resident gulf killifish (Fundulus grandis). Environ Sci Technol 47:5074–5082

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dubansky B, Whitehead A, Rice CD, Galvez F (2014) Response to comment on “multi-tissue molecular, genomic, and developmental effects of the Deepwater Horizon oil spill on resident gulf killifish (Fundulus grandis)”. Environ Sci Technol 14(13):7679–7680

    Article  CAS  Google Scholar 

  • Dubansky BH, Dubansky B (2017) Natural development of dermal ectopic bone in the American alligator (Alligator mississippiensis) resembles heterotopic ossification disorders in humans. Anat Rec (Hoboken) 301(1):56–76

    Article  Google Scholar 

  • Duffy TA, Childress W, Portier R, Chesney EJ (2016) Responses of bay anchovy (Anchoa mitchilli) larvae under lethal and sublethal scenarios of crude oil exposure. Ecotoxicol Environ Saf 134:264–272

    Article  CAS  Google Scholar 

  • Esser C, Bargen I, Weighardt H, Haarmann-Stemmann T, Krutmann J (2013) Functions of the aryl hydrocarbon receptor in the skin. Semin Immunopathol 35:677–691

    Article  CAS  PubMed  Google Scholar 

  • Faunes F, Larrain J (2016) Conservation in the involvement of heterochronic genes and hormones during developmental transitions. Dev Biol 416:3–17

    Article  CAS  PubMed  Google Scholar 

  • Felter SP, Daston GP, Euling SY, Piersma AH, Tassinari MS (2015) Assessment of health risks resulting from early-life exposures: are current chemical toxicity testing protocols and risk assessment methods adequate? Crit Rev Toxicol 45:219–244

    Article  CAS  PubMed  Google Scholar 

  • Frantzen M, Falk-Petersen I-B, Nahrgang J, Smith TJ, Olsen GH, Hangstad TA, Camus L (2012) Toxicity of crude oil and pyrene to the embryos of beach spawning capelin (Mallotus villosus). Aquat Toxicol 108:42–52

    Article  CAS  PubMed  Google Scholar 

  • Fuiman LA (2002) Special considerations of fish eggs and larvae. In: Fuiman LA, Werner RG (eds) Fishery science: the unique contributions of early life stages. Blackwell Science, Oxford, pp 1–32

    Google Scholar 

  • Fuiman LA, Poling KR, Higgs DM (1998) Quantifying developmental progress for comparative studies of larval fishes. Copeia 1998:602–611

    Article  Google Scholar 

  • Garcia GR, Noyes PD, Tanguay RL (2016) Advancements in zebrafish applications for 21st century toxicology. Pharmacol Ther 161:11–21

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Goldberg J, Barrasso DA, Agostini MG, Quinzio S (2016) Vocal sac development and accelerated sexual maturity in the lesser swimming frog, Pseudis minuta (Anura, Hylidae). Zoology (Jena) 119:489–499

    Article  Google Scholar 

  • Gomez C, Ozbudak EM, Wunderlich J, Baumann D, Lewis J, Pourquie O (2008) Control of segment number in vertebrate embryos. Nature 454:335–339

    Article  CAS  PubMed  Google Scholar 

  • Gomez C, Pourquie O (2009) Developmental control of segment numbers in vertebrates. J Exp Zool 312B:533–544

    Article  Google Scholar 

  • Gomula A, Koziel S (2015) Post-migration adaptation and age at menarche in the second generation of migrants. Anthropol Anz 72:245–255

    Article  PubMed  Google Scholar 

  • Gould SJ (1977) Ontogeny and phylogeny. Belknap Press, Cambridge

    Google Scholar 

  • Gould SJ, Lewontin RC (1979) Spandrels of San-Marco and the panglossian paradigm–a critique of the adaptationist program. Proc R Soc Lond Ser B-Biol Sci 205:581–598

    CAS  Google Scholar 

  • Grandjean P (2016) Paracelsus revisited: the dose concept in a complex world. Basic Clin Pharmacol Toxicol 119:126–132

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Harandi OF, Ambros VR (2015) Control of stem cell self-renewal and differentiation by the heterochronic genes and the cellular asymmetry machinery in Caenorhabditis elegans. Proc Natl Acad Sci U S A 112:E287–E296

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Heindel JJ, Balbus J, Birnbaum L, Brune-Drisse MN, Grandjean P, Gray K, Landrigan PJ, Sly PD, Suk W, Cory Slechta D, Thompson C, Hanson M (2015) Developmental origins of health and disease: integrating environmental influences. Endocrinology 156:3416–3421

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Incardona JP (2017) Molecular mechanisms of crude oil developmental toxicity in fish. Arch Environ Contam Toxicol 73(1):19–32

    Article  CAS  PubMed  Google Scholar 

  • Incardona JP, Collier TK, Scholz NL (2011) Oil spills and fish health: exposing the heart of the matter. J Expo Sci Environ Epidemiol 21:3–4

    Article  CAS  PubMed  Google Scholar 

  • Incardona JP, Swarts TL, Edmunds RC, Linbo TL, Aquilina-Beck A, Sloan CA, Gardner LD, Block BA, Scholz NL (2013) Exxon Valdez to Deepwater Horizon: comparable toxicity of both crude oils to fish early life stages. Aquat Toxicol 142:303–316

    Article  PubMed  CAS  Google Scholar 

  • Jeffery JE, Bininda-Emonds OR, Coates MI, Richardson MK (2005) A new technique for identifying sequence heterochrony. Syst Biol 54:230–240

    Article  PubMed  Google Scholar 

  • Jolma IW, Laerum OD, Lillo C, Ruoff P (2010) Circadian oscillators in eukaryotes. Wiley Interdiscipl Rev Syst Biol Med 2:533–549

    Article  CAS  Google Scholar 

  • Keyte A, Smith KK (2012) Heterochrony in somitogenesis rate in a model marsupial, Monodelphis domestica. Evol Dev 14:93–103

    Article  PubMed  Google Scholar 

  • Keyte AL, Smith KK (2010) Developmental origins of precocial forelimbs in marsupial neonates. Development 137:4283–4294

    Article  CAS  PubMed  Google Scholar 

  • Keyte AL, Smith KK (2014) Heterochrony and developmental timing mechanisms: changing ontogenies in evolution. Semin Cell Dev Biol 34:99–107

    Article  PubMed  Google Scholar 

  • Laudet V (2011) The origins and evolution of vertebrate metamorphosis. Curr Biol 21:R726–R737

    Article  CAS  PubMed  Google Scholar 

  • Lema SC, Schultz IR, Scholz NL, Incardona JP, Swanson P (2007) Neural defects and cardiac arrhythmia in fish larvae following embryonic exposure to 2,2′,4,4′-tetrabromodiphenyl ether (PBDE 47). Aquat Toxicol 82:296–307

    Article  CAS  PubMed  Google Scholar 

  • Lewis PD, Danisman R, Gous RM (2008) Illuminance, sexual maturation, and early egg production in female broiler breeders. Br Poult Sci 49:649–653

    Article  CAS  PubMed  Google Scholar 

  • Li ZR, Ptak D, Zhang LY, Walls EK, Zhong WX, Leung YF (2012) Phenylthiourea specifically reduces zebrafish eye size. PLoS One 7:14

    Google Scholar 

  • Lotufo GR, Farrar JD, Biedenbach JM, Laird JG, Krasnec MO, Lay C, Morris JM, Gielazyn ML (2016) Effects of sediment amended with Deepwater Horizon incident slick oil on the infaunal amphipod leptocheirus plumulosus. Mar Pollut Bull 109:253–258

    Article  CAS  PubMed  Google Scholar 

  • Love JW, Rees BB (2002) Seasonal differences in hypoxia tolerance in gulf killifish, Fundulus grandis (Fundulidae). Environ Biol Fish 63:103–115

    Article  Google Scholar 

  • Mahler GJ, Butcher JT (2011) Cardiac developmental toxicity. Birth Defects Res C Embryo Today 93:291–297

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McDonald MD, Gilmour KM, Walsh PJ, Perry SF (2010) Cardiovascular and respiratory reflexes of the gulf toadfish (Opsanus beta) during acute hypoxia. Respir Physiol Neurobiol 170:59–66

    Article  PubMed  Google Scholar 

  • Meier S, Morton HC, Nyhammer G, Grosvik BE, Makhotin V, Geffen A, Boitsov S, Kvestad KA, Bohne-Kjersem A, Goksoyr A, Folkvord A, Klungsoyr J, Svardal A (2010) Development of Atlantic cod (Gadus morhua) exposed to produced water during early life stages effects on embryos, larvae, and juvenile fish. Mar Environ Res 70:383–394

    Article  CAS  PubMed  Google Scholar 

  • Monsalve GC, Frand AR (2012) Toward a unified model of developmental timing: a “molting” approach. WormBook 1:221–230

    Google Scholar 

  • Moss EG (2007) Heterochronic genes and the nature of developmental time. Curr Biol 17:R425–R434

    Article  CAS  PubMed  Google Scholar 

  • Mueller CA, Eme J, Burggren WW, Roghair RD, Rundle SD (2015) Challenges and opportunities in developmental integrative physiology. Comp Biochem Physiol A-Mol Integr Physiol 184:113–124

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nimmo RA, Slack FJ (2009) An elegant miRror: microRNAs in stem cells, developmental timing and cancer. Chromosoma 118:405–418

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Oziolor EM, Bigorgne E, Aguilar L, Usenko S, Matson CW (2014) Evolved resistance to PCB- and PAH-induced cardiac teratogenesis, and reduced CYP1A activity in gulf killifish (Fundulus grandis) populations from the Houston Ship Channel, Texas. Aquat Toxicol 150:210–219

    Article  CAS  PubMed  Google Scholar 

  • Oziolor EM, De Schamphelaere K, Matson CW (2016a) Evolutionary toxicology: meta-analysis of evolutionary events in response to chemical stressors. Ecotoxicology 25:1858–1866

    Article  CAS  Google Scholar 

  • Oziolor EM, Dubansky B, Burggren WW, Matson CW (2016b) Cross-resistance in gulf killifish (Fundulus grandis) populations resistant to dioxin-like compounds. Aquat Toxicol 175:222–231

    Article  CAS  PubMed  Google Scholar 

  • Pasparakis C, Mager EM, Stieglitz JD, Benetti D, Grosell M (2016) Effects of Deepwater Horizon crude oil exposure, temperature and developmental stage on oxygen consumption of embryonic and larval mahi-mahi (Coryphaena hippurus). Aquat Toxicol 181:113–123

    Article  CAS  PubMed  Google Scholar 

  • Peterson T, Muller GB (2016) Phenotypic novelty in evodevo: the distinction between continuous and discontinuous variation and its importance in evolutionary theory. Evol Biol 43:314–335

    Article  PubMed  PubMed Central  Google Scholar 

  • Phillips JB, Westerfield M (2014) Zebrafish models in translational research: tipping the scales toward advancements in human health. Dis Model Mech 7:739–743

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Pie HV, Schott EJ, Mitchelmore CL (2015) Investigating physiological, cellular and molecular effects in juvenile blue crab, Callinectes sapidus, exposed to field-collected sediments contaminated by oil from the Deepwater Horizon incident. Sci Total Environ 532:528–539

    Article  CAS  PubMed  Google Scholar 

  • Pourquie O (2011) Vertebrate segmentation: from cyclic gene networks to scoliosis. Cell 145:650–663

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Quigley IK, Parichy DM (2002) Pigment pattern formation in zebrafish: a model for developmental genetics and the evolution of form. Microsc Res Tech 58:442–455

    Article  CAS  PubMed  Google Scholar 

  • Ramakrishnan V (2007) Salinity, pH, temperature, desiccation and hypoxia tolerance in the invasive freshwater apple snail Pomacea insularum. ProQuest dissertations and Theses, The University of Texas at Arlington, Ann Arbor, p 262

    Google Scholar 

  • Ransom JT, Filbrun JE, Hernandez FJ (2016) Condition of larval Spanish mackerel Scomberomorus maculatus in relation to the Deepwater Horizon oil spill. Mar Ecol Prog Ser 558:143–152

    Article  Google Scholar 

  • Reid NM, Proestou DA, Clark BW, Warren WC, Colbourne JK, Shaw JR, Karchner SI, Hahn ME, Nacci D, Oleksiak MF, Crawford DL, Whitehead A (2016) The genomic landscape of rapid repeated evolutionary adaptation to toxic pollution in wild fish. Science 354:1305–1308

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Reid NM, Whitehead A (2016) Functional genomics to assess biological responses to marine pollution at physiological and evolutionary timescales: toward a vision of predictive ecotoxicology. Brief Funct Genomics 15:358–364

    Article  PubMed  Google Scholar 

  • Schartl M (2014) Beyond the zebrafish: diverse fish species for modeling human disease. Dis Model Mech 7:181–192

    PubMed  Google Scholar 

  • Sibly RM, Baker J, Grady JM, Luna SM, Kodric-Brown A, Venditti C, Brown JH (2015) Fundamental insights into ontogenetic growth from theory and fish. Proc Natl Acad Sci U S A 112:13934–13939

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sirsat SKG, Sirsat TS, Price ER, Dzialowski EM (2016) Post-hatching development of mitochondrial function, organ mass and metabolic rate in two ectotherms, the American alligator (Alligator mississippiensis) and the common snapping turtle (Chelydra serpentina). Biol Open 5:443–451

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Smirthwaite JJ, Rundle SD, Bininda-Emonds OR, Spicer JI (2007) An integrative approach identifies developmental sequence heterochronies in freshwater basommatophoran snails. Evol Dev 9:122–130

    Article  PubMed  Google Scholar 

  • Smith KK (2002) Sequence heterochrony and the evolution of development. J Morphol 252:82–97

    Article  PubMed  Google Scholar 

  • Spicer JI (2006) A physiological approach to heterochrony. In: Warburton S, Burggren W, Pelster B, Reiber C, Spicer JI (eds) Comparative developmental physiology. Oxford University Press, New York, pp 191–202

    Google Scholar 

  • Spicer JI, Burggren WW (2003) Development of physiological regulatory systems: altering the timing of crucial events. Zoology 106:91–99

    Article  PubMed  Google Scholar 

  • Spicer JI, Rundle SD, Tills O (2011) Studying the altered timing of physiological events during development: It’s about time … or is it? Respir Physiol Neurobiol 178:3–12

    Article  PubMed  Google Scholar 

  • Stefansson ES, Langdon CJ, Pargee SM, Blunt SM, Gage SJ, Stubblefield WA (2016) Acute effects of non-weathered and weathered crude oil and dispersant associated with the Deepwater Horizon incident on the development of marine bivalve and echinoderm larvae. Environ Toxicol Chem 35:2016–2028

    Article  CAS  PubMed  Google Scholar 

  • Tammen SA, Friso S, Choi SW (2013) Epigenetics: the link between nature and nurture. Mol Asp Med 34:753–764

    Article  CAS  Google Scholar 

  • Tills O, Spicer JI, Rundle SD (2010) Salinity-induced heterokairy in an upper-estuarine population of the snail Radix balthica (Mollusca: Pulmonata). Aquat Biol 9:95–105

    Article  Google Scholar 

  • Tollis M, Hutchins ED, Kusumi K (2014) Reptile genomes open the frontier for comparative analysis of amniote development and regeneration. Int J Dev Biol 58:863–871

    Article  CAS  PubMed  Google Scholar 

  • Tsai TY-C, Choi YS, Ma W, Pomerening JR, Tang C, Ferrell JE (2008) Robust, tunable biological oscillations from interlinked positive and negative feedback loops. Science (New York, NY) 321:126–129

    Article  CAS  Google Scholar 

  • Tsai TYC, Theriot JA, Ferrell JE (2014) Changes in oscillatory dynamics in the cell cycle of early Xenopus laevis embryos. PLoS Biol 12:e1001788

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Urho L (2002) Characters of larvae–what are they? Folia Zool 51:161–186

    Google Scholar 

  • Vickaryous MK, Meldrum G, Russell AP (2015) Armored geckos: a histological investigation of osteoderm development in Tarentola (Phyllodactylidae) and Gekko (Gekkonidae) with comments on their regeneration and inferred function. J Morphol 276:1345–1357

    Article  CAS  PubMed  Google Scholar 

  • Vickaryous MK, Sire JY (2009) The integumentary skeleton of tetrapods: origin, evolution, and development. J Anat 214:441–464

    Article  PubMed  PubMed Central  Google Scholar 

  • Visvader JE, Lindeman GJ (2008) Cancer stem cells in solid tumours: accumulating evidence and unresolved questions. Nat Rev Cancer 8:755–768

    Article  CAS  PubMed  Google Scholar 

  • Vornanen M, Hassinen M (2016) Zebrafish heart as a model for human cardiac electrophysiology. Channels 10:101–110

    Article  PubMed  Google Scholar 

  • Wankowska M, Polkowska J (2010) The pituitary endocrine mechanisms involved in mammalian maturation: maternal and photoperiodic influences. Reprod Biol 10:3–18

    Article  PubMed  Google Scholar 

  • Warkman AS, Krieg PA (2007) Xenopus as a model system for vertebrate heart development. Semin Cell Dev Biol 18:46–53

    Article  CAS  PubMed  Google Scholar 

  • Warner DA (2014) Fitness consequences of maternal and embryonic responses to environmental variation: using reptiles as models for studies of developmental plasticity. Integr Comp Biol 54:757–773

    Article  PubMed  Google Scholar 

  • Webb AB, Oates AC (2016) Timing by rhythms: daily clocks and developmental rulers. Dev Growth Diff 58:43–58

    Article  Google Scholar 

  • Webb SE, Miller AL (2012) Ca2+ signaling during activation and fertilization in the eggs of teleost fish. Cell Calcium 53:24–31

    Article  PubMed  CAS  Google Scholar 

  • Wei J, Li H, Wang S, Li T, Fan J, Liang X, Li J, Han Q, Zhu L, Fan L, Zhao RC (2014) Let-7 enhances osteogenesis and bone formation while repressing adipogenesis of human stromal/mesenchymal stem cells by regulating HMGA2. Stem Cells Dev 23:1452–1463

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Weis JS, Weis P (1997) Aquatic testing with early life stages of killifish. In: Wells PG, Lee K, Blaise C (eds) Microscale testing in aquatic toxicology. CRC Press, Boca Roton, pp 479–490

    Google Scholar 

  • Weis P, Weis JS (1974) Cardiac-malformation and other effects due to insecticides in embryos of killifish, Fundulus heteroclitus. Teratology 10:263–267

    Article  CAS  PubMed  Google Scholar 

  • Weis P, Weis JS (1977) Methylmercury teratogenesis in killifish, Fundulus heteroclitus. Teratology 16:317–325

    Article  CAS  PubMed  Google Scholar 

  • Whitehead A, Dubansky B, Bodinier C, Garcia TI, Miles S, Pilley C, Raghunathan V, Roach JL, Walker N, Walter RB, Rice CD, Galvez F (2012) Genomic and physiological footprint of the Deepwater Horizon oil spill on resident marsh fishes. Proc Natl Acad Sci 109:20298–20302

    Article  CAS  PubMed  Google Scholar 

  • Whitworth KW, Symanski E, Coker AL (2008) Childhood lymphohematopoietic cancer incidence and hazardous air pollutants in Southeast Texas, 1995–2004. Environ Health Perspect 116:1576–1580

    Article  PubMed  PubMed Central  Google Scholar 

  • Whitworth KW, Symanski E, Lai D, Coker AL (2011) Kriged and modeled ambient air levels of benzene in an urban environment: an exposure assessment study. Environ Health 10:21–21

    Article  PubMed  PubMed Central  Google Scholar 

  • Wilkinson JL, Hooda PS, Barker J, Barton S, Swinden J (2016) Ecotoxic pharmaceuticals, personal care products, and other emerging contaminants: a review of environmental, receptor-mediated, developmental, and epigenetic toxicity with discussion of proposed toxicity to humans. Crit Rev Environ Sci Technol 46:336–381

    Article  CAS  Google Scholar 

  • Wilson GN, Optiz JM, Reynolds JF (1988) Heterochrony and human malformation. Am J Med Genet 29:311–321

    Article  CAS  PubMed  Google Scholar 

  • Wittig J, Münsterberg A (2016) The early stages of heart development: insights from chicken embryos. J Cardiovasc Dev Dis 3:12

    Article  PubMed Central  CAS  Google Scholar 

  • Wolf K (1954) Progress report on blue-sac disease. Prog Fish-Culturist 16:51–59

    Article  Google Scholar 

  • Wolf K (1957) Experimental induction of blue-sac disease. Trans Am Fish Soc 86:61–70

    Article  Google Scholar 

  • Yanai I, Peshkin L, Jorgensen P, Kirschner MW (2011) Mapping gene expression in two xenopus species: evolutionary constraints and developmental flexibility. Dev Cell 20:483–496

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Benjamin Dubansky .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Dubansky, B. (2018). The Interaction of Environment and Chronological and Developmental Time. In: Burggren, W., Dubansky, B. (eds) Development and Environment. Springer, Cham. https://doi.org/10.1007/978-3-319-75935-7_2

Download citation

Publish with us

Policies and ethics