Advertisement

Design and Implementation of a Hybrid Intelligent System Based on Particle Swarm Optimization and Distributed Genetic Algorithm

  • Admir Barolli
  • Shinji Sakamoto
  • Kosuke Ozera
  • Leonard Barolli
  • Elis Kulla
  • Makoto Takizawa
Conference paper
Part of the Lecture Notes on Data Engineering and Communications Technologies book series (LNDECT, volume 17)

Abstract

Wireless Mesh Networks (WMNs) have many advantages such as low cost and increased high speed wireless Internet connectivity, therefore WMNs are becoming an important networking infrastructure. In our previous work, we implemented a Particle Swarm Optimization (PSO) based simulation system, called WMN-PSO, and a simulation system based on Genetic Algorithm (GA), called WMN-GA, for solving node placement problem in WMNs. In this paper, we implement a hybrid simulation system based on PSO and distributed GA (DGA), called WMN-PSODGA. We evaluate WMN-PSODGA by computer simulations. The simulation results show that the WMN-PSODGA has good performance when the number of GA islands is 64.

References

  1. 1.
    Akyildiz, I.F., Wang, X., Wang, W.: Wireless mesh networks: a survey. Comput. Netw. 47(4), 445–487 (2005)CrossRefzbMATHGoogle Scholar
  2. 2.
    Amaldi, E., Capone, A., Cesana, M., Filippini, I., Malucelli, F.: Optimization models and methods for planning wireless mesh networks. Comput. Netw. 52(11), 2159–2171 (2008)CrossRefzbMATHGoogle Scholar
  3. 3.
    Barolli, A., Spaho, E., Barolli, L., Xhafa, F., Takizawa, M.: QoS routing in ad-hoc networks using GA and multi-objective optimization. Mob. Inf. Syst. 7(3), 169–188 (2011)Google Scholar
  4. 4.
    Behnamian, J., Ghomi, S.F.: Development of a PSO-SA hybrid metaheuristic for a new comprehensive regression model to time-series forecasting. Expert Syst. Appl. 37(2), 974–984 (2010)CrossRefGoogle Scholar
  5. 5.
    Clerc, M., Kennedy, J.: The particle swarm-explosion, stability, and convergence in a multidimensional complex space. IEEE Trans. Evol. Comput. 6(1), 58–73 (2002)CrossRefGoogle Scholar
  6. 6.
    Cunha, M.C., Sousa, J.: Water distribution network design optimization: simulated annealing approach. J. Water Resour. Plan. Manag. 125(4), 215–221 (1999)CrossRefGoogle Scholar
  7. 7.
    Del Valle, Y., Venayagamoorthy, G.K., Mohagheghi, S., Hernandez, J.C., Harley, R.G.: Particle swarm optimization: basic concepts, variants and applications in power systems. IEEE Trans. Evol. Comput. 12(2), 171–195 (2008)CrossRefGoogle Scholar
  8. 8.
    Franklin, A.A., Murthy, C.S.R.: Node placement algorithm for deployment of two-tier wireless mesh networks. In: Proceedings of Global Telecommunications Conference, pp. 4823–4827 (2007)Google Scholar
  9. 9.
    Ge, H., Du, W., Qian, F.: A hybrid algorithm based on particle swarm optimization and simulated annealing for job shop scheduling. In: Third International Conference on Natural Computation (ICNC 2007), vol. 3, pp. 715–719 (2007)Google Scholar
  10. 10.
    Girgis, M.R., Mahmoud, T.M., Abdullatif, B.A., Rabie, A.M.: Solving the wireless mesh network design problem using genetic algorithm and simulated annealing optimization methods. Int. J. Comput. Appl. 96(11), 1–10 (2014)Google Scholar
  11. 11.
    Goto, K., Sasaki, Y., Hara, T., Nishio, S.: Data gathering using mobile agents for reducing traffic in dense mobile wireless sensor networks. Mob. Inf. Syst. 9(4), 295–314 (2013)Google Scholar
  12. 12.
    Inaba, T., Elmazi, D., Sakamoto, S., Oda, T., Ikeda, M., Barolli, L.: A secure-aware call admission control scheme for wireless cellular networks using fuzzy logic and its performance evaluation. J. Mob. Multimedia 11(3&4), 213–222 (2015)Google Scholar
  13. 13.
    Inaba, T., Obukata, R., Sakamoto, S., Oda, T., Ikeda, M., Barolli, L.: Performance evaluation of a QoS-aware fuzzy-based CAC for LAN access. Int. J. Space Based Situat. Comput. 6(4), 228–238 (2016)CrossRefGoogle Scholar
  14. 14.
    Inaba, T., Sakamoto, S., Oda, T., Ikeda, M., Barolli, L.: A testbed for admission control in WLAN: a fuzzy approach and its performance evaluation. In: International Conference on Broadband and Wireless Computing, Communication and Applications, pp. 559–571. Springer (2016)Google Scholar
  15. 15.
    Lim, A., Rodrigues, B., Wang, F., Xu, Z.: k-Center problems with minimum coverage. In: Computing and Combinatorics, pp. 349–359 (2004)Google Scholar
  16. 16.
    Maolin, T., et al.: Gateways placement in backbone wireless mesh networks. Int. J. Commun. Netw. Syst. Sci. 2(1), 44 (2009)Google Scholar
  17. 17.
    Muthaiah, S.N., Rosenberg, C.P.: Single gateway placement in wireless mesh networks. In: Proceedings of 8th International IEEE Symposium on Computer Networks, pp. 4754–4759 (2008)Google Scholar
  18. 18.
    Naka, S., Genji, T., Yura, T., Fukuyama, Y.: A hybrid particle swarm optimization for distribution state estimation. IEEE Trans. Power Syst. 18(1), 60–68 (2003)CrossRefGoogle Scholar
  19. 19.
    Poli, R., Kennedy, J., Blackwell, T.: Particle swarm optimization. Swarm Intell. 1(1), 33–57 (2007)CrossRefGoogle Scholar
  20. 20.
    Sakamoto, S., Kulla, E., Oda, T., Ikeda, M., Barolli, L., Xhafa, F.: A comparison study of simulated annealing and genetic algorithm for node placement problem in wireless mesh networks. J. Mob. Multimedia 9(1–2), 101–110 (2013)Google Scholar
  21. 21.
    Sakamoto, S., Kulla, E., Oda, T., Ikeda, M., Barolli, L., Xhafa, F.: A comparison study of hill climbing, simulated annealing and genetic algorithm for node placement problem in WMNs. J. High Speed Netw. 20(1), 55–66 (2014)Google Scholar
  22. 22.
    Sakamoto, S., Kulla, E., Oda, T., Ikeda, M., Barolli, L., Xhafa, F.: A simulation system for WMN based on SA: performance evaluation for different instances and starting temperature values. Int. J. Space Based Situat. Comput. 4(3–4), 209–216 (2014)CrossRefGoogle Scholar
  23. 23.
    Sakamoto, S., Kulla, E., Oda, T., Ikeda, M., Barolli, L., Xhafa, F.: Performance evaluation considering iterations per phase and SA temperature in WMN-SA system. Mob. Inf. Syst. 10(3), 321–330 (2014)Google Scholar
  24. 24.
    Sakamoto, S., Lala, A., Oda, T., Kolici, V., Barolli, L., Xhafa, F.: Application of WMN-SA simulation system for node placement in wireless mesh networks: a case study for a realistic scenario. Int. J. Mob. Comput. Multimedia Commun. (IJMCMC) 6(2), 13–21 (2014)CrossRefGoogle Scholar
  25. 25.
    Sakamoto, S., Oda, T., Ikeda, M., Barolli, L., Xhafa, F.: An integrated simulation system considering wmn-pso simulation system and network simulator 3. In: International Conference on Broadband and Wireless Computing, Communication and Applications, pp. 187–198. Springer (2016)Google Scholar
  26. 26.
    Sakamoto, S., Oda, T., Ikeda, M., Barolli, L., Xhafa, F.: Implementation and evaluation of a simulation system based on particle swarm optimisation for node placement problem in wireless mesh networks. Int. J. Commun. Netw. Distrib. Syst. 17(1), 1–13 (2016)CrossRefGoogle Scholar
  27. 27.
    Sakamoto, S., Oda, T., Ikeda, M., Barolli, L., Xhafa, F.: Implementation of a new replacement method in WMN-PSO simulation system and its performance evaluation. In: The 30th IEEE International Conference on Advanced Information Networking and Applications (AINA 2016), pp. 206–211 (2016).  https://doi.org/10.1109/AINA.2016.42
  28. 28.
    Sakamoto, S., Obukata, R., Oda, T., Barolli, L., Ikeda, M., Barolli, A.: Performance analysis of two wireless mesh network architectures by WMN-SA and WMN-TS simulation systems. J. High Speed Netw. 23(4), 311–322 (2017)CrossRefGoogle Scholar
  29. 29.
    Sakamoto, S., Ozera, K., Barolli, A., Ikeda, M., Barolli, L., Takizawa, M.: Implementation of an intelligent hybrid simulation systems for WMNs based on particle swarm optimization and simulated annealing: performance evaluation for different replacement methods. Soft Comput. (2017). http://doi.org/10.1007/s00500-017-2948-1. Accessed 11 Dec 2017
  30. 30.
    Sakamoto, S., Ozera, K., Ikeda, M., Barolli, L.: Implementation of intelligent hybrid systems for node placement problem in WMNs considering particle swarm optimization, hill climbing and simulated annealing. Mob. Netw. Appl. (2017). http://doi.org/10.1007/s11036-017-0897-7. Accessed 06 Sep 2017
  31. 31.
    Schutte, J.F., Groenwold, A.A.: A study of global optimization using particle swarms. J. Glob. Optim. 31(1), 93–108 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  32. 32.
    Shi, Y.: Particle swarm optimization. IEEE Connect. 2(1), 8–13 (2004)Google Scholar
  33. 33.
    Shi, Y., Eberhart, R.C.: Parameter selection in particle swarm optimization. In: Evolutionary Programming VII, pp. 591–600 (1998)Google Scholar
  34. 34.
    Vanhatupa, T., Hannikainen, M., Hamalainen, T.: Genetic algorithm to optimize node placement and configuration for WLAN planning. In: Proceedings of 4th IEEE International Symposium on Wireless Communication Systems, pp. 612–616 (2007)Google Scholar
  35. 35.
    Wang, J., Xie, B., Cai, K., Agrawal, D.P.: Efficient mesh router placement in wireless mesh networks. In: Proceedings of IEEE Internatonal Conference on Mobile Adhoc and Sensor Systems (MASS 2007), pp. 1–9 (2007)Google Scholar
  36. 36.
    Xhafa, F., Sanchez, C., Barolli, L.: Ad hoc and neighborhood search methods for placement of mesh routers in wireless mesh networks. In: Proceedings of 29th IEEE International Conference on Distributed Computing Systems Workshops (ICDCS 2009), pp. 400–405 (2009)Google Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  • Admir Barolli
    • 1
  • Shinji Sakamoto
    • 2
  • Kosuke Ozera
    • 2
  • Leonard Barolli
    • 3
  • Elis Kulla
    • 4
  • Makoto Takizawa
    • 5
  1. 1.Department of Information TechnologyAleksander Moisiu University of DurresDurresAlbania
  2. 2.Graduate School of EngineeringFukuoka Institute of TechnologyFukuokaJapan
  3. 3.Department of Information and Communication EngineeringFukuoka Institute of TechnologyFukuokaJapan
  4. 4.Department of Information and Computer EngineeringOkayama University of ScienceOkayamaJapan
  5. 5.Department of Advanced Sciences, Faculty of Science and EngineeringHosei UniversityKoganei-ShiJapan

Personalised recommendations