Climate Change and Biodiversity—Implications for the Local Fisheries Sector

  • Christina Hörterer
  • Maximilian Schupp
  • Andreas Benkens
  • Bela H. Buck
Part of the SpringerBriefs in Earth System Sciences book series (BRIEFSEARTHSYST)


The North Sea has been and still is one of the most intensely used marine areas worldwide. Shipping (trade and private), the exploration/exploitation of energy resources (oil, gas and wind), fisheries and tourism compete for the scarce space (Holm et al. 2017). Especially, in German waters, resource-use conflicts rise between stakeholders.



This project is a contribution to the Earth System Knowledge Platform (ESKP) and was funded by the Helmholtz Association (Berlin, Germany). The first workshop was part of the “Events in Europe” of the European Maritime Day 2016 in Turku and endorsed with information material and publicity.

We would like to thank all workshop participants for sharing their opinion, expertise and profound knowledge, and for bringing up new starting points for future cooperation, research on and strategies for climate adaptation. Furthermore, we are grateful to the invited speakers sharing their research results.

Special thanks go to Dr Gesche Krause for assisting in organizing and moderating the first workshop as well as being a good source of information and guidance on all aspects of the this knowledge transfer project.


  1. Beaugrand, G. (2004). The North Sea regime shift: Evidence, causes, mechanisms and consequences. Progress in Oceanography, 60(2–4), 245–262.CrossRefGoogle Scholar
  2. Buck, B. H., Hörterer, C., Benkens A. (2017): Miese Zeiten für die Miesmuschel?
  3. Buck, B. H., et al. (2008). Meeting the quest for spatial efficiency: progress and prospects of extensive aquaculture within offshore wind farms. Helgoland Marine Research, 62(3), 269–281.CrossRefGoogle Scholar
  4. Buck, B. H., et al. (2004). Extensive open ocean aquaculture development within wind farms in Germany: the prospect of offshore co-management and legal constraints. Ocean and Coastal Management, 47(3–4), 95–122.CrossRefGoogle Scholar
  5. Buck, B. H., & Buchholz, C. M. (2004). The offshore-ring: A new system design for the open ocean aquaculture of macroalgae. Journal of Applied Phycology, 16(5), 355–368.CrossRefGoogle Scholar
  6. Callaway, R., et al. (2012). Review of climate change impacts on marine aquaculture in the UK and Ireland. Aquatic Conservation: Marine and Freshwater Ecosystems, 22(3), 389–421.CrossRefGoogle Scholar
  7. Cheung, W. W. L., et al. (2009). Projecting global marine biodiversity impacts under climate change scenarios. Fish and Fisheries, 10(3), 235–251.CrossRefGoogle Scholar
  8. Cheung, W. W. L., et al. (2012). Review of climate change impacts on marine fisheries in the UK and Ireland. Aquatic Conservation: Marine and Freshwater Ecosystems, 22(3), 368–388.CrossRefGoogle Scholar
  9. Doney, S. C., et al. (2012). Climate change impacts on marine ecosystems. Annual Review of Marine Science, 4, 11–37.CrossRefGoogle Scholar
  10. Dzuba, K., Schupp, M. F., Hörterer, C., & Buck, B. H. (2016): Risiken und Chancen für lokale Akteure der Nordsee, ESKP.
  11. Emeis, K.-C., et al. (2015). The North Sea—A shelf sea in the Anthropocene. Journal of Marine Systems, 141, 18–33.CrossRefGoogle Scholar
  12. Franke, H. D., & Gutow, L. (2004). Long-term changes in the macrozoobenthos around the rocky Island of Helgoland (German Bight, North Sea). Helgoland Marine Research, 58(4), 303–310.CrossRefGoogle Scholar
  13. Holm P., et al. (2017). Introduction: New approaches to sustainable offshore food production and the development of offshore platforms. In: Buck B. H., Langan, R. (Eds.) Aquaculture perspective of multi-use sites in the open ocean: The untapped potential for marine resources in the Anthropocene. ISBN(1): 978-3-319-51157-3–ISBN(2) 978-3-319-51159-7 (eBook), pp. 1–20.Google Scholar
  14. Philippart, C. J. M., et al. (2011). Impacts of climate change on European marine ecosystems: Observations, expectations and indicators. Journal of Experimental Marine Biology and Ecology, 400(1–2), 52–69.CrossRefGoogle Scholar
  15. Plymouth Marie Laboratory (2015). Vectors. Retrieved April 04, 2017, from
  16. Pogoda B., et al. (2016). Offshore-Site-Selection für die nachhaltige und multifunktionale Nutzung von Meeresarealen in stark genutzten Meeren am Beispiel der Nordsee—Teilprojekt 1. Gefördert durch die Bundesanstalt für Landwirtschaft und Ernährung. Förderkennzeichen: 2817300910, 97 pp.Google Scholar
  17. Rijnsdorp, A. D., et al. (2009). Resolving the effect of climate change on fish populations. ICES Journal of Marine Science: Journal du Conseil: fsp056.Google Scholar
  18. Stelzenmuller, V., et al. (2016). Co-location of passive gear fisheries in offshore wind farms in the German EEZ of the North Sea: A first socio-economic scoping. Journal of Environmental Management, 183, 794–805.CrossRefGoogle Scholar
  19. Wiltshire, K., et al. (2010). Helgoland roads, North sea: 45 Years of Change. Estuaries and Coasts, 33(2), 295–310.CrossRefGoogle Scholar

Copyright information

© The Author(s) 2018

Authors and Affiliations

  • Christina Hörterer
    • 1
  • Maximilian Schupp
    • 1
  • Andreas Benkens
    • 1
  • Bela H. Buck
    • 1
    • 2
  1. 1.Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research Section Marine AquacultureBremerhavenGermany
  2. 2.University of Applied Sciences, Applied Marine BiologyBremerhavenGermany

Personalised recommendations