Glass Transition of Polymers with Different Architectures in the Confinement of Nanoscopic Films

  • Michael Erber
  • Martin Tress
  • Eva Bittrich
  • Lars Bittrich
  • Klaus-Jochen Eichhorn
Part of the Springer Series in Surface Sciences book series (SSSUR, volume 52)


The dynamic properties of nanoscopic polymeric films can significantly differ from the well-known bulk properties. In general, with decreasing film thickness the surface to volume ratio increases tremendously and interfacial interactions are expected to dominate the molecular dynamics of geometrically confined polymers. On the one hand, attractive interfacial interactions can inhibit cooperative dynamics and lead to a rise in \({T_g}\). On the other hand, repulsive interactions may depress \({T_g}\). However, the order of magnitude of the \({T_g}\) aberration in nanoscopic films is quite controversially discussed and some scientists even have doubt in the existence of confinement effects for films exceeding 10 nm in thickness. In the last few years, several factors were identified which may mimic confinement effects such as plasticizer effects due to solvent residues, degradation or oxidation processes and crosslinking. In this chapter we try to give a review about the determination and complexity of the glass transition of polymers in nanoscopic films and the unique role of temperature-dependent ellipsometry with its advantages but also methodical challenges therein.


Glass transition temperature Polymers Nanoscopic films Confinement effects 


  1. 1.
    H.G. Elias, Von Monomeren und Makromolekülen zu Werkstoffen (Hüthig & Wepf, Heidelberg, 1996)Google Scholar
  2. 2.
    J.M. Fréchet, D.A. Tomalia, Dendrimers and Other Dendritic Polymers (Wiley, New York, 2001)CrossRefGoogle Scholar
  3. 3.
    B. Voit, A. Lederer, Chem. Rev. 109, 5924 (2009)CrossRefGoogle Scholar
  4. 4.
    J. Brandrup, E.H. Immergut, E.A. Grulke, Polymer Handbook (Wiley, New York, 1999)Google Scholar
  5. 5.
    S.A. Baeurle, A. Hotta, A.A. Gusev, Polymer 47, 6243 (2006)CrossRefGoogle Scholar
  6. 6.
    S. Torquato, Nature 405, 521 (2000)CrossRefGoogle Scholar
  7. 7.
    M.H. Cohen, D. Turnbull, J. Chem. Phys. 31, 1164 (1959)ADSCrossRefGoogle Scholar
  8. 8.
    G. Adam, J. Gibbs, J. Polym. Phys. 46, 139 (1965)Google Scholar
  9. 9.
    G. Strobl, The Physics of Polymers (Springer, Berlin, 2007)Google Scholar
  10. 10.
    J.L. Keddie, R.A.L. Jones, R.A. Cory, Faraday Discuss. 98, 219 (1994)ADSCrossRefGoogle Scholar
  11. 11.
    J.L. Keddie, R.A.L. Jones, R.A. Cory, Eur. Lett. 27, 59 (1994)ADSCrossRefGoogle Scholar
  12. 12.
    G. Reiter, Phys. Rev. Lett. 68, 75 (1992)ADSCrossRefGoogle Scholar
  13. 13.
    K. Dalnoki-Veress, J.A. Forrest, P.G. de Gennes, J.R. Dutcher, J. Phys. IV 10, 221 (2000)Google Scholar
  14. 14.
    F. Kremer, M. Tress, E.U. Mapesa, J. Non-Cryst. Solids 407, 277 (2015)Google Scholar
  15. 15.
    M.D. Ediger, J.A. Forrest, Macromolecules 47, 471 (2014)ADSCrossRefGoogle Scholar
  16. 16.
    Y.P. Kalmykov, in Recent Advances in Dielectric Spectroscopy, ed. by F. Kremer, E.U. Mapesa, M. Tress, M. Reiche, Molecular Dynamics of Polymers at Nanometric Length Scales: From Thin Layers to Isolated Coils, pp. 163–178Google Scholar
  17. 17.
    E.U. Mapesa, M. Erber, M. Tress, K.J. Eichhorn, A. Serghei, B. Voit, F. Kremer, Eur. Phys. J. Spec. Top. 189, 173 (2010)CrossRefGoogle Scholar
  18. 18.
    M.Y. Efremov, E.A. Olson, M. Zhang, Z.S. Zhang, L.H. Allen, Macromolecules 37, 4607 (2004)ADSCrossRefGoogle Scholar
  19. 19.
    J.A. Forrest, K. DalnokiVeress, J.R. Dutcher, Phys. Rev. E 56, 5705 (1997)ADSCrossRefGoogle Scholar
  20. 20.
    D.S. Fryer, P.F. Nealey, J.J. de Pablo, Macromolecules 33, 6439 (2000)ADSCrossRefGoogle Scholar
  21. 21.
    J.S. Sharp, J.A. Forrest, Phys. Rev. E 67, 031805 (2003)ADSCrossRefGoogle Scholar
  22. 22.
    Z. Fakhraai, J.A. Forrest, Phys. Rev. Lett. 95, 025701 (2005)ADSCrossRefGoogle Scholar
  23. 23.
    A. Raegen, M. Massa, J. Forrest, K. Dalnoki-Veress, Eur. Phys. J. E 27, 375 (2008)CrossRefGoogle Scholar
  24. 24.
    S. Kim, S.A. Hewlett, C.B. Roth, J.M. Torkelson, Eur. Phys. J. E 30, 83 (2009)CrossRefGoogle Scholar
  25. 25.
    M. Tress, M. Erber, E.U. Mapesa, J. Müller, H. Huth, A. Serghei, C. Schick, K.J. Eichhorn, B. Voit, F. Kremer, Macromolecules 43, 9937 (2010)ADSCrossRefGoogle Scholar
  26. 26.
    J.M. Torres, C.M. Stafford, D. Uhrig, B.D. Vogt, J. Poly. Sci. Part B: Poly. Phys. 50, 370 (2012)ADSCrossRefGoogle Scholar
  27. 27.
    J. Perlich, V. Korstgens, E. Metwalli, L. Schulz, R. Georgii, P. Müller-Buschbaum, Macromolecules 42, 337 (2009)ADSCrossRefGoogle Scholar
  28. 28.
    A. Serghei, F. Kremer, Macromol. Chem. Phys. 209, 810 (2008)CrossRefGoogle Scholar
  29. 29.
    A. Serghei, Progr. Colloid Polym. Sci. 132, 33 (2006)CrossRefGoogle Scholar
  30. 30.
    M. Alcoutlabi, G.B. McKenna, J. Phys.-Condens. Matter 17, R461 (2005)ADSGoogle Scholar
  31. 31.
    I. Bahar, B. Erman, F. Kremer, E.W. Fischer, Macromolecules 25, 816 (1992)ADSCrossRefGoogle Scholar
  32. 32.
    D. Labahn, R. Mix, A. Schönhals, Phys. Rev. E 79, 011801 (2009)ADSCrossRefGoogle Scholar
  33. 33.
    C.J. Ellison, S.D. Kim, D.B. Hall, J.M. Torkelson, Eur. Phys. J. E 8, 155 (2002)CrossRefGoogle Scholar
  34. 34.
    J.A. Forrest, J. Mattsson, Phys. Rev. E 61, R53 (2000)ADSCrossRefGoogle Scholar
  35. 35.
    G. B. McKenna, Eur. Phys. J.: Special Topics 141, 291 (2007)Google Scholar
  36. 36.
    R.M.A. Azzam, N.M. Bashara, Ellipsometry and Polarized Light (North Holland Publishing Company, Amsterdam, 1977)Google Scholar
  37. 37.
    Guide to using WVASE32, Spectroscopic Ellipsometry Data Aquisition and Analysis (J.A. Woollam Co., Inc)Google Scholar
  38. 38.
    H. Fujiwara, Spectroscopic Ellipsometry: Principles and Applications (Wiley, Chichester, 2007)CrossRefGoogle Scholar
  39. 39.
    H.G. Tompkins, E.A. Irene, Handbook of Ellipsometry (Springer, Heidelberg, 2005)CrossRefGoogle Scholar
  40. 40.
    K. Dalnoki-Veress, J.A. Forrest, C. Murray, C. Gigault, J.R. Dutcher, Phys. Rev. E 63, 031801 (2001)ADSCrossRefGoogle Scholar
  41. 41.
    F. Kremer, A. Schönhals, Broadband Dielectric Spectroscopy (Springer, Heidelberg, 2003)CrossRefGoogle Scholar
  42. 42.
    K. Fukao, H. Koizumi, Phys. Rev. E 77, 021503 (2008)ADSCrossRefGoogle Scholar
  43. 43.
    A. Serghei, F. Kremer, Rev. Sci. Instrum. 79, 026101 (2008)ADSCrossRefGoogle Scholar
  44. 44.
    M. Erber, M. Tress, E.U. Mapesa, A. Serghei, K.J. Eichhorn, B. Voit, F. Kremer, Macromolecules 43, 7729 (2010)ADSCrossRefGoogle Scholar
  45. 45.
    H. Huth, A.A. Minakov, A. Serghei, F. Kremer, C. Schick, Eur. Phys. J. Spec. Top. 141, 153 (2007)CrossRefGoogle Scholar
  46. 46.
    Y.P. Koh, G.B. McKenna, S.L. Simon, J. Polym. Sci. Part B: Poly. Phys. 44, 3518 (2006)ADSCrossRefGoogle Scholar
  47. 47.
    V. Lupascu, H. Huth, C. Schick, M. Wubbenhorst, Thermochim. Acta 432, 222 (2005)CrossRefGoogle Scholar
  48. 48.
    S. Kawana, R.A.L. Jones, Phys. Rev. E 6302, 021501 (2001)ADSCrossRefGoogle Scholar
  49. 49.
    T. Miyazaki, R. Inoue, K. Nishida, T. Kanaya, Eur. Phys. J. Spec. Top. 141, 203 (2007)CrossRefGoogle Scholar
  50. 50.
    R.D. Priestley, L.J. Broadbelt, J.M. Torkelson, K. Fukao, Phys. Rev. E 75, 061806 (2007)ADSCrossRefGoogle Scholar
  51. 51.
    C.J. Ellison, J.M. Torkelson, Abstr. Pap. Am. Chem. Soc. 225, U706 (2003)Google Scholar
  52. 52.
    B.M.I. Flier, M.C. Baier, J. Huber, K. Müllen, S. Mecking, A. Zumbusch, D. Wöll, J. Am. Chem. Soc. 134, 480 (2012)CrossRefGoogle Scholar
  53. 53.
    Y. Zhang, J. Zhang, Y. Lu, S. Yan, D. Shen, Macromolecules 37, 2532 (2004)ADSCrossRefGoogle Scholar
  54. 54.
    G. Beaucage, R. Composto, R.S. Stein, J. Polym. Sci. Part B: Polym. Phys. 31, 319 (1993)ADSCrossRefGoogle Scholar
  55. 55.
    O. Bäumchen, J.D. McGraw, J.A. Forrest, K. Dalnoki-.Veress. Phys. Rev. Lett. 109, 055701 (2012)ADSCrossRefGoogle Scholar
  56. 56.
    M. Erber, A. Khalyavina, K.J. Eichhorn, B. Voit, Polymer 51, 129 (2010)CrossRefGoogle Scholar
  57. 57.
    J.A. Forrest, K. Dalnoki-Veress, Adv. Colloid Interface Sci. 94, 167 (2001)CrossRefGoogle Scholar
  58. 58.
    E. Bittrich, F. Windrich, D. Martens, L. Bittrich, L. Häussler, K.-J. Eichhorn, Polymer Testing 64, 48 (2017)CrossRefGoogle Scholar
  59. 59.
    O. Kahle, U. Wielsch, H. Metzner, J. Bauer, C. Uhlig, C. Zawatski, Thin Solid Films 313, 803 (1998)ADSCrossRefGoogle Scholar
  60. 60.
    M.Y. Efremov, A.V. Kiyanova, J. Last, S.S. Soofi, C. Thode, P.F. Nealey, Phys. Rev. E 86, 021501 (2012)ADSCrossRefGoogle Scholar
  61. 61.
    M.Y. Efremov, C. Thode, P.F. Nealey, Rev. Sci. Instrum. 84, 023905 (2013)ADSCrossRefGoogle Scholar
  62. 62.
    M.Y. Efremov, Rev. Sci. Instrum. 85, 123901 (2014)ADSCrossRefGoogle Scholar
  63. 63.
    T. Lan, J.M. Torkelson, Macromol. 49, 1231 (2016)Google Scholar
  64. 64.
    K. Inoue, Prog. Poly. Sci. 25, 453 (2000)CrossRefGoogle Scholar
  65. 65.
    E. Malmstrom, A. Hult, J. Macromol. Sci. Rev. Macromol. Chem. Phys. C37, 555 (1997)CrossRefGoogle Scholar
  66. 66.
    M. Erber, U. Georgi, J. Müller, K.-J. Eichhorn, B. Voit, Eur. Poly. J. 46, 2240 (2010)CrossRefGoogle Scholar
  67. 67.
    E. Glynos, B. Friedberg, A. Chemros, G. Sakellariou, D.W. Gidley, P.F. Green, Macromol. 48, 2305 (2015)ADSCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Michael Erber
    • 1
  • Martin Tress
    • 3
  • Eva Bittrich
    • 1
  • Lars Bittrich
    • 2
  • Klaus-Jochen Eichhorn
    • 1
  1. 1.Leibniz-Institut für Polymerforschung Dresden e.V., Abteilung AnalytikDresdenGermany
  2. 2.Leibniz-Institut für Polymerforschung Dresden e.V., Abteilung VerbundwerkstoffeDresdenGermany
  3. 3.Institut für Experimentelle Physik IIUniversität LeipzigLeipzigGermany

Personalised recommendations