DNA Structures on Silicon and Diamond

  • Simona D. Pop
  • Karsten Hinrichs
  • Sylvia Wenmackers
  • Christoph Cobet
  • Norbert Esser
  • Dietrich R. T. Zahn
Part of the Springer Series in Surface Sciences book series (SSSUR, volume 52)


In the design of DNA-based hybrid devices, it is essential to have knowledge of the structural, electronic and optical properties of these biomolecular films. Spectroscopic ellipsometry is a powerful technique to probe and asses these properties. In this chapter, we review its application to biomolecular films of single DNA bases and molecules on silicon and diamond surfaces characterized in the spectral range from the near-infrared (NIR) through the visible (Vis) and toward the vacuum ultraviolet (VUV). The reported optical constants of various DNA structures are of great interest, particularly in the development of biosensors.



The financial support by Sächsisches Staatsministerium für Wissenschaft und Kunst, Deutsche Forschungsgesellschaft Graduiertenkolleg 829/1 “Accumulation of Single Molecules to Nanostructures”, Bundesministerium für Bildung und Forschung projects 05 622 ESA2, 05 KS4KTB/3, IWT-SBO (project 030219 ‘CVD Diamond: a novel multifunctional material for high temperature electronics, high power/high frequency electronics and bioelectronics’), FWO-WOG (WO.035.04N ‘Hybrid Systems at Nanometer Scale’), the IUAP-P6/42 program ‘Quantum Effects in Clusters and Nanowires’, the European Community—Research Infrastructure Action under the FP6 “Structuring the European Research Area” Programme (through the Integrated Infrastructure Initiative “Integrating Activity on Synchrotron and Free Electron Laser Science—Contract R II 3-CT-2004-506008”), and the Life Sciences Impulse Program of the transnationale Universiteit Limburg. Financial support by the Ministerium für Innovation, Wissenschaft und Forschung des Landes Nordrhein-Westfalen, the regierende Bürgermeister von Berlin—Senatskanzlei Wissenschaft und Forschung, and the Bundesministerium für Bildung und Forschung is gratefully acknowledged.


  1. 1.
    C.J. Murphy, M.R. Arkin, Y. Jenkins, N.D. Ghatlia, S.H. Bossmann, N.J. Turro, J.K. Barton, Science 262, 1025 (1993)Google Scholar
  2. 2.
    H.W. Fink, C. Schonenberger, Nature 398, 407 (1999)Google Scholar
  3. 3.
    D. Porath, A. Bezryadin, S. de Vries, C. Dekker, Nature 403, 635 (2000)Google Scholar
  4. 4.
    H. Watanabe, C. Manabe, T. Shigematsu, K. Shimotani, M. Shimizu, Appl. Phys. Lett. 79, 2462 (2001)Google Scholar
  5. 5.
    G. Cuniberti, L. Craco, D. Porath, C. Dekker, Phys. Rev. B 65, 241314(R) (2002)Google Scholar
  6. 6.
    H.W. Fink, Cell. Mol. Life Sci. 58, 1 (2001)Google Scholar
  7. 7.
    Y. Zhang, R.H. Austin, J. Kraeft, E.C. Cox, N.P. Ong, Phys. Rev. Lett. 89(1), 198102 (2002)Google Scholar
  8. 8.
    AYu. Kasumov, M. Kociak, S. Gueron, B. Reulet, V.T. Volkov, D.V. Klinov, H. Bouchiat, Science 291, 280 (2001)Google Scholar
  9. 9.
    R.G. Endres, D.L. Cox, R.R.P. Singh, Rev. Mod. Phys. 76, 195 (2004)Google Scholar
  10. 10.
    E. Braun, Y. Eichen, U. Sivan, G. Ben Yoseph, Nature 391, 775 (1998)Google Scholar
  11. 11.
    O. Harnack, W.E. Ford, A. Yasuda, J.M. Wessels, Nano Lett. 2, 919 (2002)Google Scholar
  12. 12.
    J. Richter, M. Mertig, W. Pompe, I. Monch, H.K. Schackert, Appl. Phys. Lett. 78, 536 (2001)Google Scholar
  13. 13.
    E. Ben Jacob, Z. Hermon, S. Caspi, Phys. Lett. A 263, 199 (1999)Google Scholar
  14. 14.
    Z. Hermon, S. Caspi, E. Ben Jacob, Europhys. Lett. 43, 482 (1998)Google Scholar
  15. 15.
    K.-H. Yoo, D.H. Ha, J.-O. Lee, J.W. Park, J. Kim, J.J. Kim, H.-Y. Lee, T. Kawai, H.Y. Choi, Phys. Rev. Lett. 87(1), 198102 (2001)Google Scholar
  16. 16.
    M. Zwolak, M. Di Ventra, Appl. Phys. Lett. 81, 925 (2002)Google Scholar
  17. 17.
    G. Mauricio, P. Visconti, V. Arima, S. D’Amico, A. Biasco, E. D’Amone, R. Cingolani, R. Rinaldi, Nano Lett. 3, 479 (2003)Google Scholar
  18. 18.
    G. Demirel, M.O. Caglayan, B. Garipcan, E. Piskin, Surf. Sci. 602, 952 (2008)Google Scholar
  19. 19.
    S. Elhadj, G. Singh, R.F. Saraf, Langmuir 20, 5539 (2004)Google Scholar
  20. 20.
    S. Wenmackers, S.D. Pop, K. Roodenko, V. Vermeeren, O.A. Williams, M. Daenen, O. Douhéret, J. D’Haen, A. Hardy, M.K. Van Bael, K. Hinrichs, C. Cobet, M. vandeVen, M. Ameloot, K. Haenen, L. Michiels, N. Esser, P. Wagner, Langmuir 24, 7269 (2008)Google Scholar
  21. 21.
    T. Inagaki, R.N. Hamm, E.T. Arakawa, L.R. Painter, J. Chem. Phys. 61, 4246 (1974)Google Scholar
  22. 22.
    S.R. Forrest, Chem. Rev. 97, 1793 (1997)Google Scholar
  23. 23.
    S.D. Silaghi, M. Friedrich, C. Cobet, N. Esser, W. Braun, D.R.T. Zahn, Phys. Status Solidi (b) 242, 3047 (2005)Google Scholar
  24. 24.
    K. Hinrichs, S.D. Silaghi, C. Cobet, N. Esser, D.R.T. Zahn, Phys. Status Solidi (b) 242, 2681 (2005)Google Scholar
  25. 25.
    H. Fujiwara, Spectroscopic Ellipsometry, Principles and applications (Wiley, West Sussex, 2007)Google Scholar
  26. 26.
    W.A. McGahn, B. Johs, J.A. Woollam, Thin Solid Films 234, 443 (1993)Google Scholar
  27. 27.
    R.L. Johnson, J. Barth, M. Cardona, D. Fuchs, A.M. Bradshaw, Nucl. Instrum. Methods Phys. Res. A 290, 606 (1990)Google Scholar
  28. 28.
    H.G. Tompkins, E.A. Irene (eds.), Handbook of Ellipsometry (William Andrew Publishing, Norwich, 2005)Google Scholar
  29. 29.
    D.E. Gray, S.C. Case-Green, T.S. Fell, P.J. Dobson, E.M. Southern, Langmuir 13, 2833 (1997)Google Scholar
  30. 30.
    C.A. Sprecher, W.A. Baase, W. Curtis, Biopolymers 18, 1009 (1979)Google Scholar
  31. 31.
    C. Kielbassa, L. Roza, B. Epe, Carcinogenesis 18, 811 (1997)Google Scholar
  32. 32.
    R.P. Sinha, D.P. Häder, Photochem. Photobiol. Sci. 1, 225 (2002)Google Scholar
  33. 33.
    A. Rich, M. Kasha, J. Am. Chem. Soc. 82, 6197 (1960)Google Scholar
  34. 34.
    J.R. Fresco, A.M. Lesk, R. Gorn, P. Doty, J. Am. Chem. Soc. 83, 3155 (1961)Google Scholar
  35. 35.
    S. Wenmackers, D.E.P. Vanpoucke, Stat. Neerl. 66, 339 (2012)Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Simona D. Pop
    • 1
  • Karsten Hinrichs
    • 1
  • Sylvia Wenmackers
    • 2
  • Christoph Cobet
    • 3
  • Norbert Esser
    • 1
  • Dietrich R. T. Zahn
    • 4
  1. 1.Leibniz-Institut für Analytische Wissenschaften – ISAS – e.V.BerlinGermany
  2. 2.Faculty of PhilosophyUniversity of GroningenGroningenThe Netherlands
  3. 3.Center for Surface- and NanoanalyticsJohannes Kepler Universität LinzLinzAustria
  4. 4.Semiconductor PhysicsTechnische Universität ChemnitzChemnitzGermany

Personalised recommendations