Brilliant Infrared Light Sources for Micro-ellipsometric Studies of Organic Thin Films

Chapter
Part of the Springer Series in Surface Sciences book series (SSSUR, volume 52)

Abstract

Micro-ellipsometric studies in the infrared spectral range are of increasing interest in particular for the determination of the optical constants of organic films and multilayers as in these cases the composition, thickness or roughness often vary on micro- and mesoscopic length scales. In cases where the aforementioned properties change across the probed spot, the degree of polarization of the reflected beam is deteriorated and sophisticated models have to be employed to derive the optical constants or other parameters from the determined ellipsometric angles. The achievable spot size in an ellipsometric set-up is now limited by the necessity of performing a specular reflectance measurement with a reasonably defined angle. In the optimal case the infrared radiation can be focused to near diffraction limited spot sizes with opening angles in the incoming beam of less than 7\(^\circ \). In other words such an experiment turns out to be limited by a source property that is typically called brilliance or brightness and makes the technique particularly suited for the use of accelerator based infrared sources such as 3rd generation synchrotron storage rings. The current status of such activities will be reviewed on the example of different pilot experiments. An outlook on future developments will also be given.

Notes

Acknowledgements

Critical reading and fruitful discussions by and with K. Hinrichs (ISAS), T. Kampfrath (FHI) and G.P. Williams (Thomas Jefferson Laboratory) is gratefully acknowledged. B. Green (HZDR) is acknowledged for proofreading the manuscript.

References

  1. 1.
    A. Roeseler, Infrared Spectroscopic Ellipsometry (Akademie Verlag, Berlin, 1990)Google Scholar
  2. 2.
    U. Schade, A. Roeseler, E.H. Korte, F. Bartl, K.P. Hofmann, T. Noll, W.B. Peatman, Rev- Sci. Instr. 73, 1568 (2002)ADSCrossRefGoogle Scholar
  3. 3.
    E.J. Singley, M. Abo-Bakr, D.N. Basov, J. Feikes, P. Guptasarma, K. Holldack, H.W. Hubers, P. Kuske, M.C. Martin, W.B. Peatmann, U. Schade, G. Wustefeld, Phys. Rev. B 69, 092512 (2004)ADSCrossRefGoogle Scholar
  4. 4.
    M. Gensch, K. Hinrichs, A. Roeseler, E.H. Korte, U. Schade, Anal. Bioanal. Chem. 376, 621 (2003)CrossRefGoogle Scholar
  5. 5.
    K. Hinrichs, M. Gensch, A. Roeseler, E.H. Korte, K. Sahre, K.J. Eichhorn, N. Esser, U. Schade, Appl. Spectrosc. 57, 1200 (2003)ADSCrossRefGoogle Scholar
  6. 6.
    M. Gensch, E.H. Korte, N. Esser, U. Schade, K. Hinrichs, Infrared Phys. Technol. 49, 74 (2006)ADSCrossRefGoogle Scholar
  7. 7.
    K. Roodenko, Y. Mikhaylova, L. Ionov, M. Gensch, S. Minko, U. Schade, K.J. Eichhorn, N. Esser, K. Hinrichs, Appl. Phys. Lett. 92, 103102 (2008)ADSCrossRefGoogle Scholar
  8. 8.
    G. Jin, R. Jansson, H. Arwin, Rev. Sci. Instr. 67, 2930 (1996)ADSCrossRefGoogle Scholar
  9. 9.
    K.J. Kim, Nucl. Instr. Meth. A 246, 71 (1986)ADSCrossRefGoogle Scholar
  10. 10.
    K. Hinrichs, M. Gensch, N. Esser, Appl. Spectrosc. 59, 272A (2005)ADSCrossRefGoogle Scholar
  11. 11.
    W.D. Duncan, G.P. William, Appl. Opt. 22, 2914 (1983)ADSCrossRefGoogle Scholar
  12. 12.
    J. Kirchner, R. Henn, M. Cardona, P.L. Richards, G.P. Williams, J. Opt. Soc. Am. B 14, 705 (1997)ADSCrossRefGoogle Scholar
  13. 13.
    L. Carroll, P. Friedli, Ph Lerch, J. Schneider, D. Treyer, S. Hunziker, S. Stutz, H. Sigg, Rev. Sci. Instr. 82, 063101 (2011)ADSCrossRefGoogle Scholar
  14. 14.
    K. Hinrichs, M. Gensch, N. Esser, U. Schade, J. Rappich, S. Kröning, M. Portwich, R. Volkmer, Anal. Bioanal. Chem. 387, 1823 (2007)CrossRefGoogle Scholar
  15. 15.
    J.W. Weber, K. Hinrichs, M. Gensch, M.C.M. van de Sanden, T.W.H. Oates, Appl. Phys. Lett. 99, 061909 (2011)ADSCrossRefGoogle Scholar
  16. 16.
    D. Aulich, O. Hoy, I. Luzinov, K.-J. Eichhorn, M. Stamm, M. Gensch, U. Schade, N. Esser, K. Hinrichs, Phys. Stat. Sol. C 7, 197 (2010)CrossRefGoogle Scholar
  17. 17.
    G.P. Williams, C.J. Hirschmugl, E.M. Kneedler, Rev. Sci. Instr. 60, 2176 (1989)ADSCrossRefGoogle Scholar
  18. 18.
    Y.L. Mathis, B. Gasharova, D. Moss, J. Biol. Phys. 29, 313 (2003)CrossRefGoogle Scholar
  19. 19.
    U. Jepsen, D. Cooke, M. Koch, Laser Photonics Rev. 5, 124 (2011)CrossRefGoogle Scholar
  20. 20.
    T. Nagashima, M. Hangyo, Appl. Phys. Lett. 79, 3917 (2001)ADSCrossRefGoogle Scholar
  21. 21.
    N. Matsumoto, T. Hosokura, T. Nagashima, M. Hangyo, Opt. Lett. 36, 265 (2011)ADSCrossRefGoogle Scholar
  22. 22.
    A. Rubaro, L. Braun, M. Wolf, T. Kampfrath, Appl. Phys. Lett. 101, 081103 (2012)ADSCrossRefGoogle Scholar
  23. 23.
    G.L. Carr et al., Nature 420, 153 (2002)ADSCrossRefGoogle Scholar
  24. 24.
    M. Gensch et al., Infrared Phys. Technol. 51, 423 (2008)ADSCrossRefGoogle Scholar
  25. 25.
    A.-S. Mueller, T. Baumbach, S. Casalbuoni, M. Hagelstein, E. Huttel, Y.-L. Mathis, D.A. Moss, A. Plech, R. Rossmanith, E. Bruendermann, M. Havenith, K.G. Sonnad, PAC Proceedings (2009)Google Scholar
  26. 26.
    F. Tavella, N. Stojanovic, G. Geloni, M. Gensch, Nat. Photon. 6, 162 (2011)ADSCrossRefGoogle Scholar
  27. 27.
    G.P. Williams, Rep. Prog. Phys. 69, 301 (2006)ADSCrossRefGoogle Scholar
  28. 28.
    M. Foerst, M.C. Hoffmann, S. Kaiser, A. Dienst, M. Rini, R.I. Tobey, M. Gensch, C. Manzoni, A. Cavalleri, THz control in correlated electron solids: sources and applications, in Terahertz Spectroscopy and Imaging, ed. by K.-E. Peiponen et al. Springer Series in Optical Sciences, vol. 171 (Springer, Berlin, 2012).  https://doi.org/10.1007/978-3-642-29564-5_23
  29. 29.
    M. Gensch, J.S. Lee, K. Hinrichs, N. Esser, W. Seidel, A. Roeseler, U. Schade, in Joint 31st International Conference on Infrared and Millimeter Waves and 14th International Conference on Terahertz Electronics 2006, IRMMW-THz 2006, 18–22 Sept. 2006, p. 416Google Scholar
  30. 30.
    A. Furchner, C. Kratz, D. Gkogkou, H. Ketelsen, K. Hinrichs, Appl. Surf. Sci. 421, 440 (2017)Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Institut für Strahlenphysik/Institut für Ionenstrahlphysik und Materialforschung, Helmholtz-Zentrum Dresden-RossendorfDresdenGermany

Personalised recommendations