Coupling Spectroscopic Ellipsometry and Quartz Crystal Microbalance to Study Organic Films at the Solid–Liquid Interface

  • Ralf P. Richter
  • Keith B. Rodenhausen
  • Nico B. Eisele
  • Mathias Schubert
Part of the Springer Series in Surface Sciences book series (SSSUR, volume 52)


Spectroscopic ellipsometry (SE) and quartz crystal microbalance with dissipation monitoring (QCM-D) have become popular tools for the analysis of organic films, from a few Angstroms to a few micrometers in thickness, at the solid–liquid interface. Because of their different working principles, both techniques are highly complementary, providing insight into optical and mechanical properties, respectively. The combination of SE and QCM-D in one setup is not only attractive because this information becomes available at the same time on the same sample, but also because the correlation of SE and QCM-D responses can provide novel insight that is not accessible with either technique alone. Here, we discuss how the combined setup is implemented in practice and review current data analysis approaches that are useful with regard to the correlation of both methods. Particular attention is given to the novel insight that can be obtained by the combination of both techniques, such as the solvation, density and lateral organization of organic films.


  1. 1.
    G.E. Jellison, in Handbook of Ellipsometry, ed. by H.W. Tompkins, E.A. Irene (William Andrew, Norwich, 2004), p. 237Google Scholar
  2. 2.
    H. Fujiwara, Spectroscopic Ellipsometry (Wiley, New York, 2007)CrossRefGoogle Scholar
  3. 3.
    G.E. Jellison, Thin Solid Films 313–314, 33 (1998)ADSCrossRefGoogle Scholar
  4. 4.
    K.B. Rodenhausen, M. Schubert, Thin Solid Films 519, 2772 (2011)ADSCrossRefGoogle Scholar
  5. 5.
    R.M. Azzam, N.M. Bashara, Ellipsometry and Polarized Light (North-Holland, Amsterdam, 1984)Google Scholar
  6. 6.
    H.A. Lorentz, Theory of Electrons (Teubner, Leipzig, 1906)Google Scholar
  7. 7.
    J.A. De Feijter, J. Benjamins, F.A. Veer, Biopolymers 17, 1759 (1978)CrossRefGoogle Scholar
  8. 8.
    H. Zhao, P.H. Brown, P. Schuck, Biophys. J. 100, 2309 (2011)ADSCrossRefGoogle Scholar
  9. 9.
    P.A. Cuypers, J.W. Corsel, M.P. Janssen, J.M.M. Kop, W.T. Hermens, H.C. Hemker, J. Biol. Chem. 258, 2426 (1983)Google Scholar
  10. 10.
    H.A. Lorentz, Ann. Phys. 9, 641 (1880)CrossRefGoogle Scholar
  11. 11.
    L. Lorenz, Ann. Phys. 11, 70 (1880)CrossRefGoogle Scholar
  12. 12.
    B. Borovsky, B.L. Mason, J. Krim, J. Appl. Phys. 88, 4017 (2000)ADSCrossRefGoogle Scholar
  13. 13.
    I. Reviakine, D. Johannsmann, R.P. Richter, Anal. Chem. 83, 8838 (2011)CrossRefGoogle Scholar
  14. 14.
    D. Johannsmann, Phys. Chem. Chem. Phys. 10, 4516 (2008)CrossRefGoogle Scholar
  15. 15.
    G. Sauerbrey, Z. Phys. 155, 206 (1959)ADSCrossRefGoogle Scholar
  16. 16.
    A. Domack, O. Prucker, J. Rühe, D. Johannsmann, Phys. Rev. E 56, 680 (1997)ADSCrossRefGoogle Scholar
  17. 17.
    N.B. Eisele, F.I. Andersson, S. Frey, R.P. Richter, Biomacromolecules 13, 2322 (2012)CrossRefGoogle Scholar
  18. 18.
    D. Johannsmann, I. Reviakine, E. Rojas, M. Gallego, Anal. Chem. 80, 8891 (2008)CrossRefGoogle Scholar
  19. 19.
    D. Johannsmann, I. Reviakine, R.P. Richter, Anal. Chem. 81, 8167 (2009)CrossRefGoogle Scholar
  20. 20.
    L. Macakova, E. Blomberg, P.M. Claesson, Langmuir 23, 12436 (2007)CrossRefGoogle Scholar
  21. 21.
    R.P. Richter, A. Brisson, Langmuir 20, 4609 (2004)CrossRefGoogle Scholar
  22. 22.
    P. Bingen, G. Wang, N.F. Steinmetz, M. Rodahl, R.P. Richter, Anal. Chem. 80, 8880 (2008)CrossRefGoogle Scholar
  23. 23.
    I. Carton, A.R. Brisson, R.P. Richter, Anal. Chem. 82, 9275 (2010)CrossRefGoogle Scholar
  24. 24.
    K.B. Rodenhausen, T. Kasputis, A.K. Pannier, J.Y. Gerasimov, R.Y. Lai, M. Solinsky, T.E. Tiwald, H. Wang, A. Sarkar, T. Hofmann, N. Ianno, M. Schubert, Rev. Sci. Instrum. 82, 103111 (2011)ADSCrossRefGoogle Scholar
  25. 25.
    J.W. Corsel, G.M. Willems, J.M.M. Kop, P.A. Cuypers, W.T.J. Hermens, J. Colloid Interface Sci. 111, 544 (1986)ADSCrossRefGoogle Scholar
  26. 26.
    W.T. Hermens, M. Benes, R.P. Richter, H. Speijer, Biotechnol. Appl. Biochem. 39, 277 (2004)CrossRefGoogle Scholar
  27. 27.
    C.J. Love, L.A. Estroff, J.K. Kriebel, R.G. Nuzzo, G.M. Whitesides, Chem. Rev. 105, 1103 (2005)CrossRefGoogle Scholar
  28. 28.
    K.B. Rodenhausen, B.A. Duensing, T. Kasputis, A.K. Pannier, T. Hofmann, M. Schubert, T.E. Tiwald, M. Solinsky, M. Wagner, Thin Solid Films 519, 2817 (2011)ADSCrossRefGoogle Scholar
  29. 29.
    W. Yang, J.Y. Gerasimov, R.Y. Lai, Chem. Commun. 2902 (2009)Google Scholar
  30. 30.
    J.J. Iturri Ramos, S. Stahl, R.P. Richter, S.E. Moya, Macromolecules 43, 9063 (2010)ADSCrossRefGoogle Scholar
  31. 31.
    J.C. Charmet, P.G. de Gennes, J. Phys. (Paris) 44(C10), 27 (1983)CrossRefGoogle Scholar
  32. 32.
    C.W.N. Damen, H. Speijer, W.T. Hermens, J.H.M. Schellens, H. Rosing, J.H. Beijnen, Anal. Biochem. 393, 73 (2009)CrossRefGoogle Scholar
  33. 33.
    I. Carton, L. Malinina, R.P. Richter, Biophys. J. 99, 2947 (2010)ADSCrossRefGoogle Scholar
  34. 34.
    P.M. Wolny, S. Banerji, C. Gounou, A.R. Brisson, A.J. Day, D.G. Jackson, R.P. Richter, J. Biol. Chem. 285, 30170 (2010)CrossRefGoogle Scholar
  35. 35.
    N.B. Eisele, S. Frey, J. Piehler, D. Görlich, R.P. Richter, EMBO Rep. 11, 366 (2010)CrossRefGoogle Scholar
  36. 36.
    M.A. Plunkett, Z. Wang, M.W. Rutland, D. Johannsmann, Langmuir 19, 6837 (2003)CrossRefGoogle Scholar
  37. 37.
    N.S. Baranova, E. Nilebäck, F.M. Haller, D.C. Briggs, S. Svedhem, A.J. Day, R.P. Richter, J. Biol. Chem. 286, 25675 (2011)CrossRefGoogle Scholar
  38. 38.
    E. Reimhult, C. Larsson, B. Kasemo, F. Höök, Anal. Chem. 76, 7211 (2004)CrossRefGoogle Scholar
  39. 39.
    C.A. Keller, K. Glasmästar, V.P. Zhdanov, B. Kasemo, Phys. Rev. Lett. 84, 5443 (2000)ADSCrossRefGoogle Scholar
  40. 40.
    R.P. Richter, R. Bérat, A.R. Brisson, Langmuir 22, 3497–3505 (2006)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Ralf P. Richter
    • 1
    • 2
    • 3
    • 4
  • Keith B. Rodenhausen
    • 5
  • Nico B. Eisele
    • 1
    • 6
  • Mathias Schubert
    • 7
  1. 1.Biosurfaces UnitCIC BiomaGUNEDonostia, San SebastianSpain
  2. 2.Department of Molecular ChemistryJ. Fourier UniversityGrenobleFrance
  3. 3.Max Planck Institute for Intelligent SystemsStuttgartGermany
  4. 4.School of Biomedical SciencesUniversity of LeedsLeedsUK
  5. 5.Department of Chemical and Biomolecular EngineeringUniversity of Nebraska-LincolnLincolnUSA
  6. 6.Department of Cellular LogisticsMax Planck Institute of Biophysical ChemistryGöttingenGermany
  7. 7.Department of Electrical Engineering and Center for Nanohybrid Functional MaterialsUniversity of Nebraska-LincolnLincolnUSA

Personalised recommendations