Mosquito-Borne Diseases

  • Jerome Goddard
Chapter
Part of the Infectious Disease book series (ID)

Abstract

Mosquitoes are flies in the insect family Culicidae which are the primary arthropod vectors of human diseases worldwide. They are particularly known as vectors of the agents of malaria, yellow fever, dengue, and filariasis in tropical countries. This chapter explores the biology, ecology, and disease relationships of mosquitoes, including discussion of the various mosquito groups (genera) and where each breeds, what animal hosts they feed on, and the like. Lastly, each of the major mosquito-borne diseases is presented and discussed, including their geographic distributions, mosquito vectors, and comments about their treatment, prevention, and control.

Keywords

Arthropods Disease transmission Public health Vector-borne disease Disease cycles Mosquitoes Mosquito-borne diseases Malaria Yellow fever Dengue Filariasis West Nile virus Chikungunya Zika virus 

References

  1. 1.
    Harwood RF, James MT. Entomology in human and animal health. 7th ed. New York: Macmillan; 1979. p. 548.Google Scholar
  2. 2.
    Navy. Navy Medical Department guide to malaria prevention and control. Norfolk: U.S. Naval Environmental Health Center; 1984. p. 90.Google Scholar
  3. 3.
    Anonymous. Is Malaria elimination within reach? Lancet Infect Dis. 2017;17:461.CrossRefGoogle Scholar
  4. 4.
    Baird JK. Telling the human story of Asia's invisible malaria burden. Lancet. 2017;389:781–2.CrossRefGoogle Scholar
  5. 5.
    Greenwood B. Progress with the PfSPZ vaccine for malaria. Lancet Infect Dis. 2017;17:463–4.CrossRefGoogle Scholar
  6. 6.
    WHO. World malaria report. World Health Organization, http://www.who.int/malaria/publications/world_malaria_report_2014/en/. 2014.
  7. 7.
    Cunnion S, Dickens T, Ehrhardt D, Need J, Wallace J. Navy medical department guide to malaria prevention and control. Norfolk: U.S. Navy Environ Hlth Cntr; 1984.Google Scholar
  8. 8.
    Gilles HM, Warrell DA. Bruce-Chwatt's essential Malariology. London: Arnold Publishers; 1993. p. 340.Google Scholar
  9. 9.
    Breman JG, Malaria SRW. In: Last JM, Wallace RB, editors. Public health and preventive medicine. 13th ed. Norwalk: Appleton and Lange; 1992. p. 1212–400.Google Scholar
  10. 10.
    Jensen T, Dritz DA, Fritz GN, Washino RK, Reeves WC. Lake Vera revisited: parity and survival rates of Anopheles punctipennis at the site of a malaria outbreak in the sierra Nevada foothills of California. Am J Trop Med Hyg. 1998;59(4):591.CrossRefGoogle Scholar
  11. 11.
    Lluberas MF. Nothing but net only works in basketball. Winter: Wing Beats Magazine; 2007. p. 22–7.Google Scholar
  12. 12.
    Roberts DR, Manguin S, Mouchet J. DDT house spraying and re-emerging malaria. Lancet. 2000;356:330–2.CrossRefGoogle Scholar
  13. 13.
    Anonymous. What's next for the malaria RTS,S vaccine candidate? Lancet. 2015;386:1708.Google Scholar
  14. 14.
    Clemens J, Moorthy V. Implementation of RTS,S/AS01 malaria vaccine–the need for further evidence. N Engl J Med. 2016;374:2596–7.CrossRefGoogle Scholar
  15. 15.
    Breman JG, Alilio MS, Mills A. Conquering the intolerable burden of malaria: what's new, what's needed: a summary. Am J Trop Med Hyg. 2004;71(2 Suppl):1–15.PubMedGoogle Scholar
  16. 16.
    Heymann DL, editor. Control of communicable diseases manual. 20th ed. Washington, DC: American Public Health Association; 2015.Google Scholar
  17. 17.
    Goddard J, Currier M. Case histories of insect- or arachnid-caused illness. J Agromedicine. 1995;2:53–61.CrossRefGoogle Scholar
  18. 18.
    Goddard J. Physician’s guide to arthropods of medical importance. 6th ed. Boca Raton: Taylor and Francis Group (CRC Press); 2013. p. 515.Google Scholar
  19. 19.
    Cupp EW, Klingler K, Hassan HK, Viguers LM, Unnasch TR. Transmission of eastern equine encephalomyelitis virus in Central Alabama. Am J Trop Med Hyg. 2003;68(4):495–500.PubMedPubMedCentralGoogle Scholar
  20. 20.
    Chamberlain RW. History of St. Louis encephalitis. In: Monath TP, editor. St Louis encephalitis. Washington, D.C.: American Public Health Association; 1980. p. 3–61.Google Scholar
  21. 21.
    Brinker KR, Monath TP. SLE: the acute disease. In: Monath TP, editor. St Louis encephalitis. Washington, D.C.: American Public Health Association; 1980. p. 503–34.Google Scholar
  22. 22.
    Tsai TF, St MCJ. Louis encephalitis. In: Monath TP, editor. The Arboviruses: epidemiology and ecology, vol. 4. Boca Raton: CRC Press; 1988. p. 113–43.Google Scholar
  23. 23.
    Shaman J, Day JF, Stieglitz M. Drought-induced amplification of Saint Louis encephalitis virus, Florida. Emer Infect Dis. 2002;8:575–80.CrossRefGoogle Scholar
  24. 24.
    CDC. Outbreak of West Nile-like viral encephalitis in New York. CDC. MMWR. 1999;48:845–8.Google Scholar
  25. 25.
    Hayes EB, Komar N, Nasci RS, Montgomery SP, O'Leary DR, Campbell GL. Epidemiology and transmission dynamics of West Nile virus disease. Emerg Infect Dis. 2005;11:1167–73.CrossRefGoogle Scholar
  26. 26.
    Mostashari F, Bunning ML, Kitsutani P. Epidemic West Nile encephalitis, New York, 1999: results of a household-based seroepidemiological survey. Lancet. 2001;358:261–4.CrossRefGoogle Scholar
  27. 27.
    Asnis DW, Conetta R, Teixeira A. The West Nile virus outbreak of 1999 in New York: the flushing hospital experience. Clin Infect Dis. 2000;30:413–7.CrossRefGoogle Scholar
  28. 28.
    Kilpatrick AM, Kramer LD, Campbell SR, Alleyne EO, Dobson AP, Daszak P. West Nile virus risk assessment and the bridge vector paradigm. Emerg Infect Dis. 2005;11(3):425–9.CrossRefGoogle Scholar
  29. 29.
    Molaei G, Andreadis TG, Armstrong PM, Anderson JF, Vossbrinck CR. Host feeding patterns of Culex mosquitoes and West Nile virus transmission, northeastern United States. Emerg Infect Dis. 2006;12:468–74.CrossRefGoogle Scholar
  30. 30.
    CDC. Western equine and other encephalitis case numbers. In: Arbovirus diseases branch, division of vector-borne infectious diseases. Ft. Collins; 1998.Google Scholar
  31. 31.
    Turell MJ. Vector competence of three Venezuelan mosquitoes for an epizootic IC strain of Venezuelan equine encephalitis virus. J Med Entomol. 1999;36:407–9.CrossRefGoogle Scholar
  32. 32.
    USDA. Venezuelan equine encephalomyelitis, a national emergency. USDA, Animal Plant Health Inspection Service, Washington, DC; 1972. APHIS-81-1Google Scholar
  33. 33.
    Tesh RB, Solomon T. Japanese encephalitis, West Nile, and other flavivirus infections. In: Guerrant RL, Walker DH, Weller PF, editors. Tropical infectious diseases. 3rd ed. New York: Saunders Elsevier Publishing; 2011.Google Scholar
  34. 34.
    CDC. Japanese encephalitis surveillance and immunization–Asia and the western Pacific. CDC. MMWR. 2013;62:658–62.Google Scholar
  35. 35.
    Burke DS, Leake CJ. Japanese encephalitis. In: Monath TP, editor. The Arboviruses: Epidemiology and Ecology. Vol. 3. Boca Raton: CRC Press, Inc.; 1988. p. 63–92.Google Scholar
  36. 36.
    Mannix FL, Wesson DW, Potential for introduction and establishment of Japanese encephalitis virus in North America. Presentation at the 56th annual meeting of the American Society of Tropical Medicine and Hygiene, November 4–8. 2007.Google Scholar
  37. 37.
    Enserink M. Tropical disease follows mosquitoes to Europe. Science (News Focus). 2007;317:1485.Google Scholar
  38. 38.
    Weaver SC, Smith DW. Alphavirus infections. In: Guerrant RL, Walker DH, Weller PF, editors. Tropical infectious diseases. 3rd ed. London: Saunders (Elsevier); 2011. p. 519–24.Google Scholar
  39. 39.
    Enserink M. Chikungunya: no longer a third world disease. Science (News Focus). 2007;318:1860–1.Google Scholar
  40. 40.
    Leparc-Goffart I, Nougairede A, Cassadou S, Prat C, de Lamballerie X. Chikungunya in the Americas. Lancet. 2014;383:514.CrossRefGoogle Scholar
  41. 41.
    Summary CDC. Of notifiable infectious diseases and conditions -- United States, 2015. CDC. MMWR. 2017;64(53):1–144.Google Scholar
  42. 42.
    Plourde AR, Bloch EM. A literature review of Zika virus. Emerg Infect Dis. 2016;22(7):1185–92.CrossRefGoogle Scholar
  43. 43.
    Petersen LR, Jamieson DJ, Honein MA. Zika virus. N Engl J Med. 2016;375(3):294–5.PubMedGoogle Scholar
  44. 44.
    Gatherer D, Kohl A. Zika virus: a previously slow pandemic spreads rapidly through the Americas. J Gen Virol. 2016;97:269–73.CrossRefGoogle Scholar
  45. 45.
    CDC. Cumulative Zika virus disease case counts in the United States, 2015-2017. CDC website, https://www.cdc.gov/zika/reporting/case-counts.html. 2017.
  46. 46.
    Lambrechts L, Scott TW, Gubler DJ. Consequences of the expanding global distribution of Aedes albopictus for dengue virus transmission. PLoS Negl Trop Dis. 2010;4(5):e646.CrossRefGoogle Scholar
  47. 47.
    Rai KS. Aedes albopictus in the Americas. Annu Rev Entomol. 1991;36:459–84.CrossRefGoogle Scholar
  48. 48.
    Gubler DJ. Epidemic dengue and dengue hemorrhagic fever: a global public health problem in the 21st century. In: Scheld WM, Armstrong D, Hughes JM, editors. Emerging infections. Vol. 1. Washington, D.C.: ASM Press; 1998. p. 1–14.Google Scholar
  49. 49.
    Dengue SAM. An underappreciated threat. Inf Med. 2005;22:304–6.Google Scholar
  50. 50.
    Anonymous. Dengue more prevalent than thought. Science (News Focus). 2013;340:127.Google Scholar
  51. 51.
    CDC. Locally acquired dengue -- Key West, Florida, 2009-2010. CDC. MMWR. 2010;59:577–81.Google Scholar
  52. 52.
    Hahn MB, Eisen L, McAllister J, Savage HM, Mutebi JP, Eisen RJ. Updated reported distribution of Aedes (Stegomyia) aegypti and Aedes (Stegomyia) albopictus (Diptera: Culicidae) in the United States, 1995-2016. J Med Entomol. 2017;54(5):1420–4.CrossRefGoogle Scholar
  53. 53.
    CDC. Dengue hemorrhagic fever -- U.S.-Mexico border, 2005. CDC. MMWR. 2007;56:785–9.Google Scholar
  54. 54.
    CDC. Surveillance summary. CDC. MMWR. 1994;43/SS-2:8. 1994Google Scholar
  55. 55.
    Halstead SB. Emergence mechanisms in yellow fever and dengue. In: Scheld WM, Craig WA, Hughes JM, editors. Emerging infections, part II, vol. 2. Washington, DC: ASM Press; 1998. p. 65–79.CrossRefGoogle Scholar
  56. 56.
    Normile D. Hunt for dengue vaccine heats up as the disease burden grows. Science (News Focus). 2007;317:1494–5.Google Scholar
  57. 57.
    Normile D. Dengue vaccine trial poses public health quandry. Science (News Focus). 2014;345:367.Google Scholar
  58. 58.
    Wilder-Smith A, Gubler DJ. Dengue vaccines at a crossroad. Science (News Focus). 2015;350:626–7.Google Scholar
  59. 59.
    Normile D. Safety concerns derail dengue vaccination program. Science (News Focus). 2017;358:1514–5.Google Scholar
  60. 60.
    Service MW. Mosquitoes. In: Lane RP, Crosskey RW, editors. Medical insects and arachnids. London: Chapman and Hall; 1996. p. 120–240.Google Scholar
  61. 61.
    Sanders EJ, Borus P, Ademba G, Kuria G, Tukei PM, LeDuc JW. Sentinel surveillance for yellow fever in Kenya. Emerg Infect Dis. 1996;2:236–8.CrossRefGoogle Scholar
  62. 62.
    Garske T, Van Kerkhove MD, Yactayo S, Ronveaux O, Lewis RF, Staples JE, et al. Yellow fever in Africa: estimating the burden of disease and impact of mass vaccination from outbreak and serological data. PLoS Med. 2014;11(5):e1001638.CrossRefGoogle Scholar
  63. 63.
    Barrett AD. Yellow fever in Angola and beyond–the problem of vaccine supply and demand. N Engl J Med. 2016;375:301–3.CrossRefGoogle Scholar
  64. 64.
    MacFarland JM, Baddour LM, Nelson JE. Imported yellow fever in a United States citizen. Clin Infect Dis. 1997;25:1143–7.CrossRefGoogle Scholar
  65. 65.
    Cope SE. Yellow fever–the scourge revealed. Florida Mosquito Control Association, Wing Beats. 1996;7:14–26.Google Scholar
  66. 66.
    Crosby MC. The American plague. New York: Berkley Books; 2006. p. 308.Google Scholar
  67. 67.
    White M. Yellow fever. Memphis: The Commercial Appeal Newspaper; 1978.Google Scholar
  68. 68.
    Bres PLJ. A century of progress in combating yellow fever. Bull WHO. 1986;64:775–86.PubMedPubMedCentralGoogle Scholar
  69. 69.
    WHO. Fact sheet: lymphatic filariasis. Geneva: World Health Organization; 2017. p. 4.Google Scholar
  70. 70.
    Cunningham NM. Lymphatic filariasis in immigrants from developing countries. Am Fam Phys. 1997;55:119–1204.Google Scholar
  71. 71.
    Markell E, Voge M, John D. Medical parasitology. 7th ed. Philadelphia: W.B. Saunders; 1992.Google Scholar
  72. 72.
    Brygoo ER. Epidemiology of filariasis. Noumea: Proceedings of a conference on filariasis in the South Pacific, South Pacific Commission; 1953.Google Scholar
  73. 73.
    Cao WC, Van der Ploeg CP, Van der Sluijs IJ, Habbema JD. Ivermectin for the chemotherapy of bancroftian filariasis: a meta-analysis of the effect of single treatment. Tropical Med Int Health. 1997;2:393–403.CrossRefGoogle Scholar
  74. 74.
    de Silva N, Guyatt H, Anthelmintics BD. A comparative review of their clinical pharmacology. Drugs. 1997;53:769–88.CrossRefGoogle Scholar
  75. 75.
    Thomas JG, Sundman D, Greene JN, Coppola D, Lu L, Robinson LA, et al. A lung nodule: malignancy or the dog heartworm? Inf Med. 1998;15:105–6.Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Jerome Goddard
    • 1
  1. 1.Extension Professor of Medical EntomologyMississippi State UniversityMississippi StateUSA

Personalised recommendations