Skip to main content

Dynamics of Arthropod-Borne Diseases

  • Chapter
  • First Online:
Infectious Diseases and Arthropods

Part of the book series: Infectious Disease ((ID))

Abstract

Transmission of disease agents by arthropods is a complex phenomenon, including relationships among the various arthropod vectors, their pathogens, and their animal hosts. Myriad factors affect the ability of arthropods to acquire, maintain, and ultimately transmit pathogens. This chapter presents an in-depth discussion of the concept of vector competence and the various ways arthropods acquire and transmit disease agents. Mechanical transmission of disease agents occurs when arthropods merely physically transport pathogens from one place or host to another one, while biological transmission is much more complex, occurring when the disease agent undergoes changes in form or multiplies within its arthropod vector.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Lane RS. Competence of ticks as vectors of microbial agents with an emphasis on Borrelia burgdorferi. In: Sonenshine DE, Mather TN, editors. Ecological dynamics of tick-borne zoonoses. New York: Oxford University Press; 1994. p. 45–67.

    Google Scholar 

  2. McHugh CP. Arthropods: vectors of disease agents. Lab Med. 1994;25:429–37.

    Article  Google Scholar 

  3. Lane RP, Crosskey RW. Medical insects and arachnids. New York: Chapman and Hall; 1996. p. 723.

    Google Scholar 

  4. Bressler K, Shelton C. Ear foreign-body removal: a review of 98 consecutive cases. Laryngoscope. 1993;103:367–70.

    Article  CAS  Google Scholar 

  5. Kopanic RJ, Sheldon BW, Wright CG. Cockroaches as vectors of Salmonella: laboratory and field trials. J Food Prot. 1994;57:125–32.

    Article  Google Scholar 

  6. Zurek L, Schal C. Evaluation of the German cockroach as a vector for verotoxigenic Escherichia coli F18 in confined swine production. Vet Microbiol. 2004;101:263–7.

    Article  Google Scholar 

  7. Chamberlain RW, Sudia WD. Mechanism of transmission of viruses by mosquitoes. Annu Rev Entomol. 1961;6:371–90.

    Article  CAS  Google Scholar 

  8. Harwood RF, James MT. Entomology in human and animal health. 7th ed. New York: Macmillan; 1979. p. 548.

    Google Scholar 

  9. Goddard J, de Shazo RD. Bed bugs (Cimex lectularius) and clinical consequences of their bites. J Am Med Assoc. 2009;301:1358–66.

    Article  CAS  Google Scholar 

  10. Azad AF, Beard CB. Rickettsial pathogens and their arthropod vectors. Emerg Infect Dis. 1998;4:179–86.

    Article  CAS  Google Scholar 

  11. Burgdorfer W, Brinton LP. Mechanisms of transovarial infection of spotted fever rickettsiae in ticks. Ann N Y Acad Sci. 1975;266:61–72.

    Article  CAS  Google Scholar 

  12. Niebylski ML, Peacock MG, Schwan TG. Lethal effect of Rickettsia rickettsii on its tick vector (Dermacentor andersoni). Appl Environ Microbiol. 1999;65:773–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Macaluso KR, Sonenshine DE, Ceraul SM, Azad AF. Rickettsial infection in Dermacentor variabilis inhibits transovarial transmission of a second rickettsia. J Med Entomol. 2002;39:809–13.

    Article  Google Scholar 

  14. McHugh CP. Ecology of a semi-isolated population of adult Anopheles freeborni: abundance, trophic status parity, survivorship, gonotrophic cycle length, and host selection. Am J Trop Med Hyg. 1989;41:169–76.

    Article  CAS  Google Scholar 

  15. Porter CH, Collins FH. Susceptibility of Anopheles hermsi to Plasmodium vivax. Am J Trop Med Hyg. 1990;42:414–6.

    Article  CAS  Google Scholar 

  16. Jensen T, Dritz DA, Fritz GN, Washino RK, Reeves WC. Lake Vera revisited: parity and survival rates of Anopheles punctipennis at the site of a malaria outbreak in the Sierra Nevada foothills of California. Am J Trop Med Hyg. 1998;59:591–4.

    Article  CAS  Google Scholar 

  17. Gray HF. The confusing epidemiology of malaria in California. Am J Trop Med Hyg. 1956;5:411–8.

    Article  CAS  Google Scholar 

  18. Gray HF, Fontaine RE. A history of malaria in California. Proc Calif Mosq Control Assoc. 1957;25:1–20.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Goddard, J. (2018). Dynamics of Arthropod-Borne Diseases. In: Infectious Diseases and Arthropods. Infectious Disease. Humana Press, Cham. https://doi.org/10.1007/978-3-319-75874-9_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-75874-9_2

  • Published:

  • Publisher Name: Humana Press, Cham

  • Print ISBN: 978-3-319-75873-2

  • Online ISBN: 978-3-319-75874-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics