Skip to main content

Overview of Adversary Detection in CR Networks

  • Chapter
  • First Online:
Book cover Adversary Detection For Cognitive Radio Networks

Part of the book series: SpringerBriefs in Electrical and Computer Engineering ((BRIEFSELECTRIC))

  • 332 Accesses

Abstract

As discussed in Chap. 1, the PUE attack and the Byzantine attack are two severe security threats unique to the CR networks, and if not properly addressed, the functionality of the entire CR network will be demolished. With this consideration, advocators of the CR technology have devoted substantial research efforts to address these two security problems in the past decade. Most of them focus on how to detect and identify the adversaries; after all, detection and identification is usually the very first step to remove a security threat. The objective of this chapter is to provide an overview of the recent advancements in detecting these two disrupting attacks. Particularly, in the first part of this chapter, we intend to provide a systematic review of the existing PUE attack detection methods, and in the second part of this chapter, we will switch gear towards the Byzantine attack detection schemes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    In [5], it is assumed that multiple PUE attackers are uniformly distributed in the CR networks. Interested readers may refer to [5] for the details of estimating these two parameters in practice.

  2. 2.

    This mechanism does require some modifications in the PU transmitter but the PU receiver can be kept unchanged.

  3. 3.

    As the removal of the malicious SU will change the set \(\mathcal {F}_t\), the suspicious levels of the rest SUs have to be re-evaluated.

  4. 4.

    This is feasible since the reputation update formula is publicly known and the attacker knows its own reported sensing results.

  5. 5.

    One of the fundamental differences between the DS theory and probability theory is that the basic assignment admits \(\sum _{A\in 2^{\varOmega }} m(A)=1\) whereas a probability measurement admits p(Ω) = 1.

References

  1. R. Chen, J.-M. Park, and J. H. Reed. Defense against primary user emulation attacks in cognitive radio networks. IEEE Journal on selected areas in communications, 26 (1), 2008.

    Google Scholar 

  2. T. S. Rappaport et al. Wireless communications: principles and practice, volume 2. Prentice Hall PTR New Jersey, 1996.

    Google Scholar 

  3. N. Patwari and S. K. Kasera. Robust location distinction using temporal link signatures. In ACM international conference on Mobile computing and networking, pages 111–122. ACM, 2007.

    Google Scholar 

  4. L. Huang, L. Xie, H. Yu, W. Wang, and Y. Yao. Anti-PUE attack based on joint position verification in cognitive radio networks. In Communications and Mobile Computing (CMC), International Conference on, volume 2, pages 169–173. IEEE, 2010.

    Google Scholar 

  5. Z. Jin, S. Anand, and K. P. Subbalakshmi. Mitigating primary user emulation attacks in dynamic spectrum access networks using hypothesis testing. ACM SIGMOBILE Mobile Computing and Communications Review, 13 (2): 74–85, 2009.

    Article  Google Scholar 

  6. J. Blesa, E. Romero, A. Rozas, and A. Araujo. PUE attack detection in CWSNs using anomaly detection techniques. EURASIP Journal on Wireless Communications and Networking, 2013 (1): 215, 2013.

    Google Scholar 

  7. N. T. Nguyen, R. Zheng, and Z. Han. On identifying primary user emulation attacks in cognitive radio systems using nonparametric Bayesian classification. IEEE Transactions on Signal Processing, 60 (3): 1432–1445, 2012.

    Article  MathSciNet  Google Scholar 

  8. K. Maeda, A. Benjebbour, T. Asai, T. Furuno, and T. Ohya. Recognition among OFDM-based systems utilizing cyclostationarity-inducing transmission. In New Frontiers in Dynamic Spectrum Access Networks, IEEE International Symposium on, pages 516–523. IEEE, 2007.

    Google Scholar 

  9. K. Kim, C. M. Spooner, I. Akbar, and J. H. Reed. Specific emitter identification for cognitive radio with application to IEEE 802.11. In Global Telecommunications Conference, IEEE GLOBECOM, pages 1–5. IEEE, 2008.

    Google Scholar 

  10. Z. Chen, T. Cooklev, C. Chen, and C. Pomalaza-Ráez. Modeling primary user emulation attacks and defenses in cognitive radio networks. In Performance Computing and Communications Conference, pages 208–215. IEEE, 2009.

    Google Scholar 

  11. C. Zhao, L. Xie, X. Jiang, L. Huang, and Y. Yao. A phy-layer authentication approach for transmitter identification in cognitive radio networks. In Communications and Mobile Computing, International Conference on, volume 2, pages 154–158. IEEE, 2010.

    Google Scholar 

  12. P. K. Harmer, D. R. Reising, and M. A. Temple. Classifier selection for physical layer security augmentation in cognitive radio networks. In Communications (ICC), IEEE International Conference on, pages 2846–2851. IEEE, 2013.

    Google Scholar 

  13. W.-L. Chin, C.-L. Tseng, C.-S. Tsai, W.-C. Kao, and C.-W. Kao. Channel-based detection of primary user emulation attacks in cognitive radios. In IEEE Vehicular Technology Conference, pages 1–5. IEEE, 2012.

    Google Scholar 

  14. X. Tan, K. Borle, W. Du, and B. Chen. Cryptographic link signatures for spectrum usage authentication in cognitive radio. In Proceedings of the fourth ACM conference on Wireless network security, pages 79–90. ACM, 2011.

    Google Scholar 

  15. N. Goergen, T. C. Clancy, and T. R. Newman. Physical layer authentication watermarks through synthetic channel emulation. In New Frontiers in Dynamic Spectrum, IEEE Symposium on, pages 1–7. IEEE, 2010.

    Google Scholar 

  16. A. K. Jain, J. Mao, and K. M. Mohiuddin. Artificial neural networks: A tutorial. Computer, 29 (3): 31–44, 1996.

    Article  Google Scholar 

  17. C. M. Bishop. Neural networks for pattern recognition. Oxford university press, 1995.

    MATH  Google Scholar 

  18. D. Pu and A. M. Wyglinski. Primary-user emulation detection using database-assisted frequency-domain action recognition. IEEE Transactions on Vehicular Technology, 63 (9): 4372–4382, 2014.

    Article  Google Scholar 

  19. H. Li and Z. Han. Blind dogfight in spectrum: combating primary user emulation attacks in cognitive radio systems with unknown channel statistics. In IEEE International Conference on Communications, pages 1–6. IEEE, 2010.

    Google Scholar 

  20. Y. Freund and R. E. Schapire. A decision-theoretic generalization of on-line learning and an application to boosting. In European conference on computational learning theory, pages 23–37. Springer, 1995.

    Google Scholar 

  21. C. Chen, H. Cheng, and Y.-D. Yao. Cooperative spectrum sensing in cognitive radio networks in the presence of the primary user emulation attack. IEEE Transactions on Wireless Communications, 10 (7): 2135–2141, 2011.

    Article  Google Scholar 

  22. W. Wang, H. Li, Y. L. Sun, and Z. Han. Securing collaborative spectrum sensing against untrustworthy secondary users in cognitive radio networks. EURASIP Journal on Advances in Signal Processing, 2010 (1): 695750, 2009.

    Google Scholar 

  23. P. Kaligineedi, M. Khabbazian, and V. K. Bhargava. Malicious user detection in a cognitive radio cooperative sensing system. IEEE Transactions on Wireless Communications, 9 (8): 2488–2497, 2010.

    Article  Google Scholar 

  24. O. Fatemieh, R. Chandra, and C. A. Gunter. Secure collaborative sensing for crowd sourcing spectrum data in white space networks. In IEEE Symposium on New Frontiers in Dynamic Spectrum, pages 1–12. IEEE, 2010.

    Google Scholar 

  25. K. Zeng, P. Pawelczak, and D. Cabric. Reputation-based cooperative spectrum sensing with trusted nodes assistance. IEEE communications letters, 14 (3), 2010.

    Google Scholar 

  26. S. Li, H. Zhu, B. Yang, C. Chen, and X. Guan. Believe yourself: A user-centric misbehavior detection scheme for secure collaborative spectrum sensing. In IEEE International Conference on Communications, pages 1–5. IEEE, 2011.

    Google Scholar 

  27. E. Noon and H. Li. Defending against hit-and-run attackers in collaborative spectrum sensing of cognitive radio networks: A point system. In IEEE Vehicular Technology Conference, pages 1–5. IEEE, 2010.

    Google Scholar 

  28. A. Vempaty, K. Agrawal, P. Varshney, and H. Chen. Adaptive learning of Byzantines’ behavior in cooperative spectrum sensing. In IEEE Wireless Communications and Networking Conference, pages 1310–1315. IEEE, 2011.

    Google Scholar 

  29. H. Li and Z. Han. Catch me if you can: An abnormality detection approach for collaborative spectrum sensing in cognitive radio networks. IEEE Transactions on Wireless Communications, 9 (11): 3554–3565, 2010.

    Article  Google Scholar 

  30. F. Adelantado and C. Verikoukis. A non-parametric statistical approach for malicious users detection in cognitive wireless ad-hoc networks. In IEEE International Conference on Communications, pages 1–5. IEEE, 2011.

    Google Scholar 

  31. J. D. Gibbons and S. Chakraborti. Nonparametric statistical inference. Springer, 2011.

    Book  MATH  Google Scholar 

  32. R. Chen, J.-M. Park, and K. Bian. Robust distributed spectrum sensing in cognitive radio networks. In IEEE INFOCOM, pages 1876–1884. IEEE, 2008.

    Google Scholar 

  33. F. Zhu and S.-W. Seo. Enhanced robust cooperative spectrum sensing in cognitive radio. Journal of Communications and Networks, 11 (2): 122–133, 2009.

    Article  Google Scholar 

  34. A. W. Min, K.-H. Kim, and K. G. Shin. Robust cooperative sensing via state estimation in cognitive radio networks. In IEEE Symposium on New Frontiers in Dynamic Spectrum Access Networks, pages 185–196. IEEE, 2011.

    Google Scholar 

  35. Z. Qin, Q. Li, and G. Hsieh. Defending against cooperative attacks in cooperative spectrum sensing. IEEE Transactions on Wireless Communications, 12 (6): 2680–2687, 2013.

    Article  Google Scholar 

  36. A. Monticelli, F. F. Wu, and M. Yen. Multiple bad data identification for state estimation by combinatorial optimization. IEEE Transactions on Power Delivery, 1 (3): 361–369, 1986.

    Article  Google Scholar 

  37. H. Li, X. Cheng, K. Li, C. Hu, N. Zhang, and W. Xue. Robust collaborative spectrum sensing schemes for cognitive radio networks. IEEE Transactions on Parallel and Distributed Systems, 25 (8): 2190–2200, 2014.

    Article  Google Scholar 

  38. A. W. Min, K. G. Shin, and X. Hu. Attack-tolerant distributed sensing for dynamic spectrum access networks. In IEEE International Conference on Network Protocols, pages 294–303. IEEE, 2009.

    Google Scholar 

  39. C. Chen, M. Song, C. Xin, and M. Alam. A robust malicious user detection scheme in cooperative spectrum sensing. In IEEE Global Communications Conference, pages 4856–4861. IEEE, 2012.

    Google Scholar 

  40. S. Bhattacharjee, S. Debroy, M. Chatterjee, and K. Kwiat. Utilizing misleading information for cooperative spectrum sensing in cognitive radio networks. In IEEE International Conference on Communications, pages 2612–2616. IEEE, 2013.

    Google Scholar 

  41. G. Noh, S. Lim, S. Lee, and D. Hong. Goodness-of-fit-based malicious user detection in cooperative spectrum sensing. In IEEE Vehicular Technology Conference, pages 1–5. IEEE, 2012.

    Google Scholar 

  42. P. H. Kvam and B. Vidakovic. Nonparametric statistics with applications to science and engineering, volume 653. John Wiley & Sons, 2007.

    Book  MATH  Google Scholar 

  43. F. Penna, Y. Sun, L. Dolecek, and D. Cabric. Detecting and counteracting statistical attacks in cooperative spectrum sensing. IEEE Transactions on Signal Processing, 60 (4): 1806–1822, 2012.

    MathSciNet  Google Scholar 

  44. G. Shafer et al. A mathematical theory of evidence, volume 1. Princeton university press Princeton, 1976.

    MATH  Google Scholar 

  45. U. K. Rakowsky. Fundamentals of the Dempster-Shafer theory and its applications to reliability modeling. International Journal of Reliability, Quality and Safety Engineering, 14 (06): 579–601, 2007.

    Article  Google Scholar 

  46. S. Jana, K. Zeng, W. Cheng, and P. Mohapatra. Trusted collaborative spectrum sensing for mobile cognitive radio networks. IEEE Transactions on Information Forensics and Security, 8 (9): 1497–1507, 2013.

    Article  Google Scholar 

  47. Q. Zhu, Z. Han, and T. Basar. No-regret learning in collaborative spectrum sensing with malicious nodes. In IEEE International Conference on Communications, pages 1–6. IEEE, 2010.

    Google Scholar 

  48. J. Wang, J. Yao, and Q. Wu. Stealthy-attacker detection with a multidimensional feature vector for collaborative spectrum sensing. IEEE Transactions on Vehicular Technology, 62 (8): 3996–4009, 2013.

    Article  Google Scholar 

  49. F. R. Yu, H. Tang, M. Huang, Z. Li, and P. C. Mason. Defense against spectrum sensing data falsification attacks in mobile ad hoc networks with cognitive radios. In IEEE Military Communications Conference, pages 1–7. IEEE, 2009.

    Google Scholar 

  50. R. Olfati-Saber, J. A. Fax, and R. M. Murray. Consensus and cooperation in networked multi-agent systems. Proceedings of the IEEE, 95 (1): 215–233, 2007.

    Article  MATH  Google Scholar 

  51. T. Zhang, R. Safavi-Naini, and Z. Li. Redisen: Reputation-based secure cooperative sensing in distributed cognitive radio networks. In IEEE International Conference on Communications, pages 2601–2605. IEEE, 2013.

    Google Scholar 

  52. Q. Yan, M. Li, T. Jiang, W. Lou, and Y. T. Hou. Vulnerability and protection for distributed consensus-based spectrum sensing in cognitive radio networks. In IEEE INFOCOM, pages 900–908. IEEE, 2012.

    Google Scholar 

  53. L. Duan, A. W Min, J. Huang, and K. G. Shin. Attack prevention for collaborative spectrum sensing in cognitive radio networks. IEEE Journal on Selected Areas in Communications, 30 (9): 1658–1665, 2012.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2018 The Author(s)

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

He, X., Dai, H. (2018). Overview of Adversary Detection in CR Networks. In: Adversary Detection For Cognitive Radio Networks. SpringerBriefs in Electrical and Computer Engineering. Springer, Cham. https://doi.org/10.1007/978-3-319-75868-8_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-75868-8_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-75867-1

  • Online ISBN: 978-3-319-75868-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics