Skip to main content

Converging Shocks

  • Chapter
  • First Online:

Part of the book series: Shock Wave and High Pressure Phenomena ((SHOCKWAVE))

Abstract

In the beginning of this chapter, we give on overview of early experimental work on generation of converging shocks by various methods ranging from annular shock tubes to cylindrical as well as spherical explosion chambers. These early experimental results along with Guderley’s solution raise important questions of self-similarity and stability of converging shocks. Experimental results showing the dependence of the power-law exponent on the adiabatic exponent for various gases are presented and discussed. We then give an overview of theoretical and numerical results on the stability of converging shocks based on the theory of geometrical shock dynamics. A number of experimental results on shock convergence show that converging shock experiences tendency toward planarity, e.g., generation of plane sides and sharp corners in initially cylindrical shock front. In this respect several sections of this chapter are devoted to experimental as well as numerical work on convergence of polygonal shocks and their ability to preserve symmetry and thus enhance the final energy density. Production of cylindrical and spherical converging shocks by a gradual change in the shock tube cross-section has been proposed by several researchers. We discuss the basic theoretical and numerical results as well as their experimental realization leading to extreme conditions at the focal area with gas temperatures in excess of 30,000 K. The end of this chapter is devoted to shock generation and focusing in water by means of exploding wire techniques. Experimental findings showing extreme states of matter at the focal area of a converging shock in water generated by a moderate input of initial energy are discussed.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Ahlborn, B., Fong, K.: Stability criteria for converging shock waves. Can. J. Phys. 56(5), 1292–1296 (1978)

    Article  Google Scholar 

  2. Aki, T., Higashino, F.: A numerical study on implosion of polygonally interacting shocks and consecutive explosion in a box. In: Current Topics in Shock Waves: 17th Proceedings of the International Symposium on Shock Waves and Shock Tubes, Bethlehem, PA, 17–21 July (A91-40576 17-34), pp. 167–172. American Institute of Physics, New York (1989)

    Google Scholar 

  3. Antonov, O., Efimov, S., Yanuka, D., Kozlov, M., Gurovich, V.T., Krasik, Y.E.: Generation of extreme state of water by spherical wire array underwater electrical explosion. Phys. Plasmas 19, 102702 (2012)

    Article  Google Scholar 

  4. Antonov, O., Efimov, S., Yanuka, D., Kozlov, M., Gurovich, V.T., Krasik, Y.E.: Generation of converging strong shock wave formed by microsecond timescale underwater electrical explosion of spherical wire array. Appl. Phys. Lett. 102, 124104 (2013)

    Article  Google Scholar 

  5. Antonov, O., Efimov, S., Yanuka, D., Kozlov, M., Gurovich, V.T., Krasik, Y.E.: Diagnostics of a converging strong shock wave generated by underwater explosion of a spherical wire array. J. Appl. Phys. 115, 223303 (2014)

    Article  Google Scholar 

  6. Apazidis, N.: Focusing of weak shock waves in confined axisymmetric chambers. Shock Waves 3, 201–212 (1994)

    Article  MATH  Google Scholar 

  7. Apazidis, N.: Numerical investigation of shock induced bubble collapse in water. Phys. Fluids 28, 046101 (2016)

    Article  Google Scholar 

  8. Apazidis, N., Lesser, M.B.: On generation and convergence of polygonal-shaped shock waves. J. Fluid Mech. 309, 301–319 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  9. Apazidis, N., Lesser, M.B., Tillmark, N. Johansson, B.: An experimental and theoretical study of converging shock waves. Shock Waves 12, 39–58 (2002)

    Article  MATH  Google Scholar 

  10. Apazidis, N., Kjellander, M., Tillmark, N.: High energy concentration by symmetric shock focusing. Shock Waves 23, 361–368 (2013)

    Article  Google Scholar 

  11. Balasubramanian, K., Eliasson, V.: Numerical investigations of the porosity effect on the shock focusing process. Shock Waves 23(6), 583–594 (2013)

    Article  Google Scholar 

  12. Barbry, H., Mounier, C., Saillard, Y.: Transformation d’un choc plan uniforme en choc cylindrique ou spherique uniforme Classical and quantum mechanics, general physics (A1110), Report CEA-N–2516, France (1986)

    Google Scholar 

  13. Baronets, P.: Imploding shock waves in a pulsed induction discharge. Fluid Dyn. 19, 503–508 (1984)

    Article  Google Scholar 

  14. Betelu, S.I., Aronson, D.G.: Focusing of noncircular self-similar shock waves. Phys. Rev. Lett. 87(7), 074501 (2001)

    Google Scholar 

  15. Book, D., Löhner, R.: Simulation and theory of the quatrefoil instability of a converging cylindrical shock. In: Current Topics in Shock Waves: 17th Proceedings of the International Symposium on Shock Waves and Shock Tubes, Bethlehem, PA, 17–21 July (A91-40576 17-34), pp. 149–154. American Institute of Physics, New York (1989)

    Google Scholar 

  16. Bond, C., Hill, D.J., Meiron, D.I., Dimotakis, P.E.: Shock focusing in a planar convergent geometry: experiment and simulation. J. Fluid Mech. 641, 297–333 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  17. Brode, H.L.: Quick estimates of peak overpressure from two simultaneous blast waves. Tech. rep., Tech. Rep. DNA4503T, Defense Nuclear Agency, Aberdeen Proving Ground, MD (1977)

    Google Scholar 

  18. Butler, D.: Converging spherical and cylindrical shocks. Report No. 54/54, Burgess Hill, New York (1954)

    Google Scholar 

  19. Cass, A.S.: Comparison of first generation (Dornier HM3) and second generation (Medstone STS) lithotriptors: treatment results with 13,864 renal and ureteral calculi. J. Urology. Am. Urological Ass. 153, 588–592 (1995)

    Article  MathSciNet  Google Scholar 

  20. Cates, J., Sturtevant, B.: Shock wave focusing using geometrical shock dynamics. Phys. Fluids 9(10), 3058–3068 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  21. Chaudhuri, A., Hadjadj, A., Sadot, O., Ben-Dor, G.: Numerical study of shock-wave mitigation through matrices of solid obstacles. Shock Waves 23, 91–101 (2013)

    Article  Google Scholar 

  22. Chessire, G., Henshaw, W.D.: Composite overlapping meshes for solution of partial differential equations. J. Comput. Phys. 1, 1 (1990)

    Google Scholar 

  23. Chester W.: The propagation of shock waves in a channel of non-uniform width. Quart. J. Mech. Appl. Math. 6(4), 440–452 (1953)

    Article  MathSciNet  MATH  Google Scholar 

  24. Chester, W.: The quasi-cylindrical shock tube. Philos. Mag. 45, 1239–1301 (1954)

    Google Scholar 

  25. Chisnell, R.F.: The normal motion of shock wave through a non-uniform one-dimensional medium. Proc. R. Soc. A 232, 350–370 (1955)

    Article  MathSciNet  MATH  Google Scholar 

  26. Chisnell R.F.: The motion of a shock wave in a channel, with applications to cylindrical and spherical shock waves. J. Fluid Mech. 2(3), 286–298 (1957)

    Article  MathSciNet  MATH  Google Scholar 

  27. Chisnell, R.F.: An analytic description of converging shock waves. J. Fluid Mech. 354, 357–375 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  28. Christopher, T.: Modeling the Dornier HM3 lithotripter. J. Acoust. Soc. Am. 96(5), 3088–3095 (1994)

    Article  Google Scholar 

  29. Christopher, P.T., Parker, K.J.: New approaches to nonlinear diffractive field propagation. J. Acoust. Soc. Am. 90(5), 488–499 (1991)

    Article  Google Scholar 

  30. Cocchi, J.P.,Saurel, R.,Loraud, J.C.: Treatment of interface problems with Godunov-type schemes. Shock Waves 65, 347–357 (1996)

    Article  MATH  Google Scholar 

  31. Coleman, A.J., Saunders, J.E.: A survey of the acoustic output of commercial extracorporeal shockwave lithotripters. Ultasound Med. Biol. 15, 213–227 (1989)

    Article  Google Scholar 

  32. Davitt, K., Arvengas, A., Caupin, F.: Water at the cavitation limit: density of the metastable liquid and size of the critical bubble. Europhys. Lett. 90, 16002 (2010)

    Article  Google Scholar 

  33. De Neef, T., Hechtman, C.: Numerical study of the flow due to a cylindrical implosion. Comput. Fluids 6, 185–202 (1978)

    Google Scholar 

  34. Demmig, F., Hemmsoth, H.H.: Model computation of converging cylindrical shock waves – initial configurations, propagation, and reflection. In: Current Topics in Shock Waves: 17th Proceedings of the International Symposium on Shock Waves and Shock Tubes, Bethlehem, PA, 17–21 July (A91-40576 17-34), pp. 155–160. American Institute of Physics, New York (1989)

    Google Scholar 

  35. Dennen, R.S., Wilson, L.N.: Electrical generation of imploding shock waves. In: Exploding Wires, pp. 145–157. Plenum Press, New York (1962)

    Chapter  Google Scholar 

  36. Dimotakis, P.E., Samtaney, R.: Planar shock cylindrical focusing by a perfect-gas lens. Phys. Fluids 18, 031705 (2006)

    Article  Google Scholar 

  37. Dumitrescu, L.Z.: On efficient shock-focusing configurations. In: Proceedings, 11th Australian Fluid Mechanics Conference, University of Tasmania, Hobart, Australia (1992)

    Google Scholar 

  38. Eliasson, V., Gross, J.: Experimental investigation of shock wave amplification using multiple munitions. In: Ben-Dor, G., et al. (eds.) 30th International Symposium on Shock Waves 2, pp. 1017–1021 (2017)

    Chapter  Google Scholar 

  39. Eliasson, V., Apazidis, N., Tillmark, N., Lesser, M.B.: Focusing of strong shocks in an annular shock tube. Shock Waves 15, 205–217 (2006)

    Article  Google Scholar 

  40. Eliasson, V., Apazidis, N., Tillmark, N.: Controlling the form of strong converging shocks by means of disturbances. Shock Waves 17, 29–42 (2007)

    Article  Google Scholar 

  41. Eliasson, V., Tillmark, N., Szeri, A.J., Apazidis, N.: Light emission during shock focusing in air and argon. Phys. Fluids 19, 106106 (2007)

    Google Scholar 

  42. Eliasson, V., Kjellander, M., Apazidis, N.: Regular versus Mach reflection for converging polygonal shocks. Shock Waves 17, 43–50 (2007)

    Article  Google Scholar 

  43. Eliasson, V., Mello, M., Rosakis, A.J., Dimotakis, P.E.: Experimental investigation of converging shocks in water with various confinement materials. Shock Waves 20, 395–408 (2010)

    Article  Google Scholar 

  44. El Mekki-Azouzi, M., Ramboz, C., Lenain, J.-F., Caupin, F.: A coherent picture of water at extreme negative pressure. Nat. Phys. 9, 38–41 (2013)

    Article  Google Scholar 

  45. Evans, A.K.: Instability of converging shock waves and sonoluminescence. Phys. Fluids 22(3), 5004–5011 (1996)

    Article  MathSciNet  Google Scholar 

  46. Fisher, J.C.: The fracture of liquids. J. Appl. Phys. 19, 1062–1067 (1948)

    Article  Google Scholar 

  47. Fong, K., Ahlborn, B.: Stability of converging shock waves. Phys. Fluids 22(3), 416–421 (1979)

    Article  Google Scholar 

  48. Fujumoto, Y., Mishkin, E.: Analysis of spherically imploding shocks. Phys. Fluids 21, 1933 (1978)

    Article  MATH  Google Scholar 

  49. Gardner, G.H., Book, D.L., Bernstein I.B.: Stability of imploding shocks in the CCW approximation. J. Fluid Mech. 114, 41–58 (1982)

    Article  MATH  Google Scholar 

  50. Glass, I.I.: Shock Waves and Man. University of Toronto Institute for Aerospace Studies, Toronto (1974)

    Google Scholar 

  51. Godunov, S.K.: A difference scheme for numerical solution of discontinuous solution of hydrodynamic equations. Math. Sbornik 47, 271–306 (1959)

    Google Scholar 

  52. Guderley, G.: Starke kugelige und zylindrische Verdichtungsstöße in der Nähe des Kugelmittelpunktes bzw. der Zylinderachse. Luftfahrt Forsch. 19, 302–312 (1942)

    Google Scholar 

  53. Gustafsson, G.: Focusing of weak shock waves in a slightly elliptical cavity. J. Sound Vib. 116(1), 137–148 (1987)

    Article  MATH  Google Scholar 

  54. Hafner, P.: Strong converging shock waves near the center of convergence: a power series solution. J. Appl. Math. 48, 1244 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  55. Hamilton, M.F.: Transient axial solution for the reflection of a spherical wave from a concave ellipsoidal mirror. J. Acoust. Soc. Am. 93(3), 1256–1266 (1993)

    Article  Google Scholar 

  56. Henshaw, W.D., Smyth, N.F., Schwendeman, D.W.: Numerical shock propagation using geometrical shock dynamics. J. Fluid Mech. 171, 519–545 (1986)

    Article  MATH  Google Scholar 

  57. Hikida, S., Needham, C.E.: Low amplitude multiple burst (lamb) model. Tech. rep., S-cubed Final Report, S-CUBED-R-81-5067 (1981)

    Google Scholar 

  58. Hornung, H.G., Pullin, D.I., Ponchaut, N.F.: On the question of universality of imploding shock waves. Acta Mech. 201, 31–35 (2008)

    Article  MATH  Google Scholar 

  59. Hosseini, S.H.R., Takayama, K.: Implosion from a spherical shock wave reflected from a spherical wall. J. Fluid Mech. 530, 223–239 (2005)

    Article  MATH  Google Scholar 

  60. Johansson, B., Apazidis, N., Lesser M.B.: On shock waves in a confined reflector. Wear 233–235, 79–85 (1999)

    Article  Google Scholar 

  61. Johnsen, E., Colonius, T.: Shock-induced collapse of a gas bubble in shockwave lithotripsy. J. Acoust. Soc. Am. 124(4), 2011–2020 (2008)

    Article  Google Scholar 

  62. Johnsen, E., Colonius, T.: Numerical simulations of non-spherical bubble collapse. J. Fluid Mech. 629, 231–262 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  63. Kandula, M., Freeman, R.: On the interaction and coalescence of spherical blast waves. Shock Waves 18, 21–33 (2008)

    Article  MATH  Google Scholar 

  64. Keefer, J.H., Reisler, R.E.: Simultaneous and non-simultaneous multiple detonations. In: Proceeding of the 14th International Symposium on Shock Waves and Shock Tubes, New South Wales, Australia, pp. 543–552 (1984)

    Google Scholar 

  65. Kjellander, M., Tillmark, N., Apazidis, N.: Thermal radiation from a converging shock implosion. Phys. Fluids 22, 046102 (2010)

    Article  MATH  Google Scholar 

  66. Kjellander, M., Tillmark, N., Apazidis, N.: Shock dynamics of strong imploding cylindrical and spherical shock waves with real gas effects. Phys. Fluids 22, 116102 (2010)

    Article  MATH  Google Scholar 

  67. Kjellander, M., Tillmark, N., Apazidis, N.: Experimental determination of self-similarity constant for converging cylindrical shocks. Phys. Fluids 23(11), 116103 (2011)

    Article  Google Scholar 

  68. Kjellander, M., Tillmark, N., Apazidis, N.: Energy concentration by spherical converging shocks generated in a shock tube. Phys. Fluids 24, 126103 (2012)

    Article  Google Scholar 

  69. Kleine, H.: Time resolved shadowgraphs of focusing cylindrical shock waves. Study treatise at the Stoßenwellenlabor, RWTH Achen, FRG (1985)

    Google Scholar 

  70. Knystautas, R., Lee, B., Lee, J.: Diagnostic experiments on converging detonations. Phys. Fluids. Suppl. 1, 165–168 (1969)

    Google Scholar 

  71. Kozlov, M., Gurovich, V.T., Krasik, Y.E.: Stability of imploding shocks generated by underwater electrical explosion of cylindrical wire array. Phys. Plasmas 20, 112107 (2013)

    Article  Google Scholar 

  72. Lazarus, R.: Self-similar solutions for converging shocks and collapsing cavities. SIAM J. Numer. Anal. 18, 316 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  73. Lazarus, R., Richtmyer, R.: Similarity Solutions for Converging Shocks. Los Alamos Scientific Laboratory of the University of California, Los Alamos, NM (1977)

    Google Scholar 

  74. Liverts, M., Apazidis, N.: Limiting temperatures of spherical shock wave implosion. Phys. Rev. Lett. 116, 014501 (2016)

    Google Scholar 

  75. Matsuo, H., Nakamura, Y.: Experiments on cylindrically converging blast waves. J. Appl. Phys. 51, 3126–3129 (1980)

    Google Scholar 

  76. Matsuo, H., Nakamura, Y.: Cylindrically converging blast waves in air. J. Appl. Phys. 52, 4503–4507 (1981)

    Article  Google Scholar 

  77. Matsuo, M., Ebihara, K., Ohya, Y.: Spectroscopic study of cylindrically converging shock waves. J. Appl. Phys. 58(7), 2487–2491 (1985)

    Article  Google Scholar 

  78. McMillen, J.H.: Shock wave pressures in water produced by impact of small spheres. Phys. Rev. 68(9,10),198–210 (1945)

    Article  Google Scholar 

  79. Mishkin, E.A., Fujimoto, Y.: Analysis of a cylindrical imploding shock wave. J. Fluid Mech. 89(1), 61–78 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  80. Müller, M.: Comparison of Dornier lithotripters: measurement of shock wave fields and fragmentation effectiveness. Biomed. Tech. 35, 250–262 (1990)

    Google Scholar 

  81. Nakamura, Y.: Analysis of self-similar problems of imploding shock waves by method of characteristics. Phys. Fluids 26, 1234 (1983)

    Article  MATH  Google Scholar 

  82. Neemeh, R.A., Ahmad, Z.: Stability and collapsing mechanism of strong and weak converging cylindrical shock waves subjected to external perturbation. In: Proceeding of the 14th International Symposium on Shock Waves and Shock Tubes, Berkeley, CA, 28 July–2 Aug, pp. 423–430. Stanford University Press, Stanford (1986)

    Google Scholar 

  83. Norris, A.N.: Flexural waves on narrow plates. J. Acoust. Soc. Am. 113, 2647–2658 (2003)

    Article  Google Scholar 

  84. Perry, R.W., Kantrowitz, A.: The production and stability of converging shock waves. J. Appl. Phys. 22(7), 878–886 (1951)

    Article  Google Scholar 

  85. Ponchaut, N., Hornung, H.G., Mouton, D.I.: On imploding cylindrical and spherical shock waves in a perfect gas. J. Fluid Mech. 560, 103 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  86. Qiu, S., Eliasson, V.: Interaction and coalescence of multiple simultaneous and non-simultaneous blast waves. Shock Waves 26(3), 287–297 (2016)

    Article  Google Scholar 

  87. Qiu, S., Liu, K., Eliasson, V.: Parallel implementation of geometrical shock dynamics for two-dimensional converging shock waves. Comput. Phys. Commun. 207, 186–192 (2016)

    Article  MATH  Google Scholar 

  88. Ramsey S.D., Kammb J.R., Bolstad J.H.: The Guderley problem revisited. Int. J. Comput. Fluid Dyn. 26(2), 79–99 (2012)

    Article  MathSciNet  Google Scholar 

  89. Roberts, D.E., Glass, I.I.: Spectroscopic investigation of combustion-driven spherical implosion waves. Phys. Fluids 14, 1662–1670 1971

    Article  Google Scholar 

  90. Roig, R.A., Glass, I.I.: Spectroscopic study of combustion-driven implosions. Phys. Fluids 20, 1651–1656 (1977)

    Article  Google Scholar 

  91. Saillard, Y., Barbry, H., Mounier, C.: Transformation of a plane uniform shock into cylindrical or spherical uniform shock by wall shaping. In: Proceedings of the XV-th International Symposium on Shack Tubes and Waves. Stanford University Press, Stanford (1985)

    Google Scholar 

  92. Saito, T., Glass, I.: Temperature measurements at an implosion focus. Proc. R. Soc. Lond. A 384, 217–231 (1982)

    Article  Google Scholar 

  93. Sankin, G.N., Zhou, Y., Zhong, P.: Focusing of shock waves induced by optical breakdown in water. J. Acoust. Soc. Am. 123(6), 4071–4081 (2008)

    Article  Google Scholar 

  94. Schwendeman, D.W., Whitham, G.B.: On converging shock waves. Proc. R. Soc. Lond. A 413, 297–311 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  95. Schwendeman, D.W.: On converging shock waves of spherical and polyhedral form. J. Fluid Mech. 454, 365–386 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  96. Sembian, S., Liverts, M., Tillmark, N., Apazidis, N.: Plane shock wave interaction with a cylindrical column. Phys. Fluids 28, 056102 (2016)

    Google Scholar 

  97. Sommerfeld, M., Müller, H.M.: Experimental and numerical studies of shock wave focusing in water. Exp. Fluids 6, 209–216 (1988)

    Article  Google Scholar 

  98. Stan, C.A., Willmont, P.R., Stone, H.A., Koglin, J.E., Mengling, L., Aquila, A.L., Robinson, J.S., Gumerlock, K.L., Blaj, G., Sierra, R.G., Boulet, S., Guillet, S.A.H., Curtis, R.H., Vetter, S.L., Loos, H., Turner, J.L., Decker, F.-J.: Negative pressures and spallation in water drops subjected to nanosecond shock waves. Phys. Chem. Lett. 7, 2055–2062 (2016)

    Article  Google Scholar 

  99. Stanyukovich, K.: Unsteady Motion of Continuous Media. Pergamon, Oxford (1960)

    Chapter  Google Scholar 

  100. Stanyukovich, K.P.: Unsteady Motion of Continuous Media. Pergamon Press, Oxford (1960)

    Chapter  Google Scholar 

  101. Starkenberg, J.K., Benjamin, K.J.: Predicting coalescence of blast waves from sequentially exploding ammunition stacks. Tech. rep., Army Research Lab Report ARL-TR-645 (1994)

    Google Scholar 

  102. Sturtevant, B., Kulkarny, V.A.: The focusing of weak shock waves. J. Fluid Mech. 73(04), 651–671 (1976)

    Article  Google Scholar 

  103. Sun, M., Takayama, K.: An artificially upstream flux vector splitting scheme for the Euler equations. J. Comput. Phys. 189(1), 305–329 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  104. Takayama, K., Onodera, O., Hoshizawa, Y.: Experiments on the Stability of Converging Cylindrical Shock Waves. Shock Waves Marseille IV, pp. 117–127. Springer, Berlin (1984)

    Google Scholar 

  105. Takayama, K., Kleine, H., Grönig, H.: An experimental investigation of the stability of converging cylindrical shock waves in air. Exp. Fluids 5, 315–322 (1987)

    Google Scholar 

  106. Taylor, G.: The formation of a blast wave by a very intense explosion. I. Theoretical discussion. Proc. R. Soc. Lond. A Math. Phys. Sci. 201, 159–174 (1950)

    Article  MATH  Google Scholar 

  107. Trevena, D.H.: Cavitation an generation tension in liquid. J. Phys. D: Appl. Phys. 17, 2139–2164 (1984)

    Article  Google Scholar 

  108. Van Dyke, M., Guttman, A.: The converging shock wave from a spherical or cylindrical piston. J. Fluid Mech. 120, 451 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  109. Wan, Q., Eliasson, V.: Numerical study of shock wave attenuation in two-dimensional ducts using solid obstacles – How to utilize shock focusing techniques to attenuate shock waves. Aerospace 2, 203–221 (2015)

    Article  Google Scholar 

  110. Wang, C., Eliasson, V.: Shock wave focusing in water inside convergent structures. Int. J. Multiphys. 6, 267–282 (2012)

    Article  Google Scholar 

  111. Wang, C., Qiu, S., Eliasson, V.: Quantitative pressure measurement of shock waves in water using a schlieren-based visualization technique. Exp. Tech. (2013). https://doi.org/10.1111/ext.12068

  112. Wang, C., Qiu, S., Eliasson, V.: Investigation of shock wave focusing in water in a logarithmic spiral duct, part 1: Weak coupling. Ocean Eng. 102, 174–184 (2014). https://doi.org/10.1016/j.oceaneng.2014.09.012

    Article  Google Scholar 

  113. Wang, C., Grunenfelder, L., Patwardhan, R., Qiu, S., Eliasson, V.: Investigation of shock wave focusing in water in a logarithmic spiral duct, part 2: strong coupling. Ocean Eng. 102, 185–196 (2015)

    Article  Google Scholar 

  114. Watanabe, M., Takayama, K.: Stability of converging cylindrical shock waves. Shock Waves 1, 149–160 (1991)

    Article  Google Scholar 

  115. Watanabe, M., Onodera, O., Takayama, K.: Shock wave focusing in a vertical annular shock tube. Theor. Appl. Mech. 32, 99–104 (1995)

    Google Scholar 

  116. Welsh, R.L.: Imploding shocks and detonations. J. Fluid Mech. 29, 61–79 (1967)

    Article  MATH  Google Scholar 

  117. Whitham, G.B.: A new approach to problems of shock dynamics Part I Two-dimensional problems. J. Fluid Mech. 2, 145–171 (1957)

    Article  MathSciNet  MATH  Google Scholar 

  118. Whitham, G.B.: A new approach to problems of shock dynamics Part II Two-dimensional problems. J. Fluid Mech. 5, 369–386 (1957)

    Article  MathSciNet  MATH  Google Scholar 

  119. Whitham, G.B.: A note on shock dynamics relative to a moving frame. J. Fluid Mech. 31, 449–453 (1968)

    Article  MATH  Google Scholar 

  120. Whitham, G.: Linear and Nonlinear Waves. Wiley, New York (1974)

    MATH  Google Scholar 

  121. Wilson, D.A., Hoyt, J.W., McKune, J.W.: Measurement of tensile strength of liquids by an explosion technique. Nature 253, 723–725 (1975)

    Article  Google Scholar 

  122. Wu, J., Neemeh, R., Ostrowski, P.: Experiments on the stability of converging cylindrical shock waves. AIAA J. 19, 257–258 (1981)

    Article  Google Scholar 

  123. Zel’dovich, Y.B., Raizer, Y.P.: Physics of shock waves and high-temperature hydrodynamic phenomena. Dover Publications, New York (1966)

    Google Scholar 

  124. Zhai, Z., Liu, C., Qin, F., Yang, J., Luo, X.: Generation of cylindrical converging shock waves based on shock dynamics theory. Phys. Fluids 22, 041701 (2010)

    Article  MATH  Google Scholar 

  125. Zheng, Q., Durben, D.J., Wolf, G.H., Angel, C.A.: Liquids at large negative pressures: water at the homogeneous nucleation limit. Science 254, 829–832 (1991)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Apazidis, N., Eliasson, V. (2019). Converging Shocks. In: Shock Focusing Phenomena. Shock Wave and High Pressure Phenomena. Springer, Cham. https://doi.org/10.1007/978-3-319-75866-4_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-75866-4_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-75864-0

  • Online ISBN: 978-3-319-75866-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics